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a b s t r a c t

This work addresses the problem of cross-modality inference (CMI), i.e., inferring missing data of
unavailable perceptual modalities (e.g., sound) using data from available perceptual modalities (e.g.,
image). We overview single-modality variational autoencoder methods and discuss three problems of
computational cross-modality inference, arising from recent developments in multimodal generative
models. Inspired by neural mechanisms of human recognition, we contribute the Nexus model, a novel
hierarchical generative model that can learn a multimodal representation of an arbitrary number of
modalities in an unsupervised way. By exploiting hierarchical representation levels, Nexus is able to
generate high-quality, coherent data of missing modalities given any subset of available modalities. To
evaluate CMI in a natural scenario with a high number of modalities, we contribute the ‘‘Multimodal
Handwritten Digit’’ (MHD) dataset, a novel benchmark dataset that combines image, motion, sound
and label information from digit handwriting. We access the key role of hierarchy in enabling high-
quality samples during cross-modality inference and discuss how a novel training scheme enables
Nexus to learn a multimodal representation robust to missing modalities at test time. Our results
show that Nexus outperforms current state-of-the-art multimodal generative models in regards to
their cross-modality inference capabilities.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Humans are provided with a complex cognitive framework
hat allows the creation of an internal representation of their
xternal reality. This map of the external world is of a multi-
odal nature, composed from information provided by the en-
ironment (such as visual, auditory or somatosensory), captured
y specific sensory organs. The biological mechanism behind
he experience of such multimodal map remains an open ques-
ion (Meyer & Damasio, 2009; Nanay, 2018). However, there
s growing empirical evidence that suggests that perceptual in-
ormation is processed hierarchically, in an unsupervised fash-
on, from lower-level sensory-specific cortices to higher-order
ultimodal cortices (Damasio, 1989; Meyer & Damasio, 2009).
The richness of such multimodal representation cannot be

verstated. For example, reading lips in an environment with no
ound induces activity in auditory cortices whose activity pat-
erns are similar with those generated during the perception of
ctual spoken words (Bourguignon, Baart, Kapnoula, & Molinaro,
020; Calvert et al., 1997). This remarkable ability to infer coher-
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ent information of absent modalities from information provided
by available perceptions, regardless of their nature or complexity,
is defined as cross-modality inference (CMI). CMI also plays a key
role in allowing humans to overcome changes to the perceptual
conditions during the execution of tasks (Maurer, Pathman, &
Mondloch, 2006; Spence, 2011; Walker et al., 2010). In Fig. 1 we
highlight the importance of CMI to successfully perform tasks in
scenarios with forced absence of perceptual experience.

Despite the complexity of its biological origin, the challenges
of processing single-modality observational data and of learning
a multimodal representation can also be addressed computation-
ally (Yan et al., 2021, 2020, 2020). Multimodal generative models
are a natural solution to learn a multimodal representation due to
their ability to encode and generate multimodal data. However, as
presented in Section 3, current multimodal generative models fall
short of the potential of computational cross-modality inference.
To address this issue, we contribute the Nexus model, a novel
unsupervised hierarchical multimodal generative model and pro-
pose a novel encoder solution and training scheme that allows
Nexus to learn a multimodal representation of an arbitrary num-
ber of input modalities. Inspired by the Convergence–Divergence
Zone (CDZ) framework for neural recognition (Damasio, 1989),
we build Nexus by considering hierarchical representation levels:
at a bottom level, modality-specific representations specialize in
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Fig. 1. The cross-modality inference (CMI) process: during the execution of tasks under incomplete perceptual experience, the agent encodes (dashed, orange) available
perceptions (e.g. audio, motion) into a multimodal representation of the environment to generate (full, blue) absent modality information (e.g. image).
Source: Adapted from André-Henri Dargelas’s painting ‘‘Blindman’s Buff’’ (1828–1906).
Fig. 2. Bayesian network representation of the relation between the observed variable, x, and the latent variable, z.
generating data; at a top level, the multimodal representation
generates samples of the modality-specific latent distributions.
Nexus leverages these specialized hierarchical representations to
generate high-quality, coherent cross-modality data.

We evaluate the cross-modality inference performance of
Nexus. Such process should be evaluated in situations where
multiple modalities provide information able to describe the
same underlying reality. However, the majority of multimodal
generative models are evaluated with standard two-modality
datasets, often image and the associated label, falling short of
accessing their CMI potential. To address the lack of a benchmark
scenario for cross-modality generation with a large number of
modalities, we contribute the ‘‘Multimodal Handwritten Digit’’
(MHD) dataset, combining image, motion, sound and semantic
information from digit handwriting. We evaluate the key role of
hierarchy in the generation of high-quality samples during CMI.
In addition, we show that our novel training scheme allows Nexus
to learn a multimodal representation robust to missing modalities
at test time. The results reveal that Nexus outperforms state-of-
the-art multimodal generative baseline models in regards to their
CMI capabilities. To summarize, the contributions of this work
are:

• In Section 3 we introduce three key issues of computational
CMI that naturally arise from current multimodal generative
models.
• In Section 5, inspired by the CDZ framework, we contribute

Nexus, a novel unsupervised hierarchical generative model
that learns a multimodal representation of an arbitrary
number of modalities. Nexus successfully performs cross-
modality inference, able to consider information provided
by any set of input modalities and to generate high-quality
coherent data for all target modalities. To do so, we intro-
duce a new encoder solution for multimodal data
(Section 5.1) and a new training scheme (Section 5.2).
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• In Section 6.1, we contribute the ‘‘Multimodal Handwritten
Digit’’ (MHD) dataset, a multimodal dataset that combines
image, motion, sound and semantic information (i.e., class
identity) from digit handwriting, thus providing a natural
benchmark to evaluate CMI.
• In Section 6.2, we evaluate the key role of considering hi-

erarchical representation spaces for high-quality, coherent,
cross-modality generation.
• In Section 6.3 we evaluate Nexus in standard multimodal

datasets and in Section 6.4 we evaluate Nexus in the chal-
lenging MHD scenario. The results reveal that our model
outperforms all baseline methods in regards to their CMI
capabilities.

2. Background

The variational auto-encoder (VAE) is a generative model orig-
inally introduced in the work of Kingma and Welling (2013).
Given some data of interest, represented as a vector x ∈ Rw , a
VAE computes a representation of x (a ‘‘code’’) in the form of a
vector z ∈ Rl, such that x can be accurately reconstructed from
z. Since, usually, l ≪ w, the vector z can be seen as a compact
representation of x, capturing the most relevant information to
reconstruct x.

Formally, a VAE can be represented as the Bayesian network in
Fig. 2a, where x is the observed data and z is a low-dimensional
latent variable. Then, given a dataset D = {x1, . . . , xN}, where
each xn is a sample of x, we want to compute a distribution pθ

that maximizes the (log-)likelihood of the data, given by

L(D) =
N∑

log pθ (xn)

n=1
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Fig. 3. Architecture of a variational auto-encoder. For a given input x, a neural network (the encoder) computes a mean µz (x) and variance σz (x) describing the
distribution qφ (z|x). Conversely, given a ‘‘code’’ z, a neural network (the decoder) computes a mean µx(z) and variance σx(z) describing the distribution pθ (x|z). Often
the variance σx(z) is assumed to be constant.
Fig. 4. Architecture of the naive multimodal extension of the variational auto-encoder. Note that, as this model ignores the decomposition of the input into distinct
modalities, it is unable to perform cross-modality inference.
raining a VAE resorts to a variational approach. Letting

θ (x) =
∫

pθ (x|z)p0(z)dz, (1)

where p0 is some pre-specified prior (usually a unitary Gaussian
distribution) and pθ is a conditional distribution parameterized θ ,
it is possible to derive and evidence lower bound (or ELBO),

L(D) ≥
N∑

n=1

Ez∼qφ (·|xn)[log pθ (xn|z)] − KL(qφ(z|xn) ∥ p0(z)), (2)

where qφ(z|x) is an arbitrary posterior distribution. The VAE is
then trained by adjusting the parameters θ and φ such that the
distributions pθ and qφ maximize the righthand side of (2) or,
equivalently, minimize the loss

ℓ(D) =
N∑

n=1

KL(qφ(z|xn) ∥ p0(z))− Ez∼qφ (·|xn)[log pθ (xn|z)]. (3)

The diagram in Fig. 3 depicts the architecture of a VAE. The
distributions qφ and pθ are usually taken as Gaussian distribu-
tions represented as neural networks. For a given input x, a first
neural network – usually referred as the encoder – computes
input-dependent mean µz(x) and variance σz(x) that describes the
distribution qφ(z|x). Conversely, given a ‘‘code’’ z, a second neural
network (the decoder) computes a mean µx(z) and variance σx(z)
describing the distribution pθ (x|z). It is possible to interpret
the first term on the righthand side of (2) as a reconstruction
term, accounting for how well pθ is able to reconstruct x from
a code z generated by qφ . The second term can be interpreted
as a regularization term, striving to keep qφ as simple as possible
in order to allow for the generation of novel samples of x by
sampling the code z from the prior p0(z).

The VAE model can easily be extended to deal with data with
multiple modalities, as depicted in Fig. 2b. Suppose that x can
be broken down as x = (x1, . . . , xM ), where each xm is an in-
put ‘‘modality’’. Different modalities may correspond to different
types of information (e.g., image, sound, etc.) and have different
dimensionality.

A naive extension of the VAE model to this situation mostly
ignores the individual modalities xm, m = 1, . . . ,M , and treats
x in an aggregated manner, as a single input. Fig. 2b depicts the
Bayesian network for such approach, where

pθ (x|z) =
M∏

pθm (x
m
|z), (4)
m=1
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and trivially leads to the loss

ℓ(D) =
N∑

n=1

KL(qφ(z|xn) ∥ p0(z))− Ez∼qφ (·|xn)

[
M∑

m=1

log pθ (xmn |z)

]
.

(5)

where both the joint-modality encoder qφ(z|x) and the modality-
specific decoders pθk (x

m
|z) are once again instantiated as neural

networks, as depicted in Fig. 4.

3. The problem of cross-modality inference

By ignoring the decomposition of the input into distinct
modalities, the simple approach in Section 2 is unable to perform
cross-modality inference, i.e., to reconstruct x from partial inputs.

One possible approach to enable the model to perform cross-
modality inference – pioneered in the work of Yin et al. (2017)
– is to consider an architecture akin to that depicted in Fig. 5.
In this architecture, the Associative VAE (AVAE), a modality-
specific encoder–decoder pair is trained to learn, respectively, the
distributions pθm (xm|z) and qφm (z|xm), for m = 1, . . . ,M . These
modality-specific models are combined by forcing the distribu-
tions over the latent space to agree for the same input.

For two modalities, i.e., an input x = {x1, x2}, Yin et al.
introduce an association loss term of the form

ℓassoc(D) =
N∑

n=1

d
(
qφ1 (·|x1n), qφ2 (·|x2n)

)
(6)

where d is a distance metric between probability distributions.1
The model in Fig. 5 is then trained as a single model, with a loss
function

ℓAVAE(D) = ℓ1(D)+ ℓ2(D)+ λℓassociative(D) (7)

where

ℓm(D) =
N∑

n=1

KL(qφm (z|xmn ) ∥ p0(z))− Ez∼qφm (·|xmn )
[
log pθm (xmn |z)

]
.

(8)

for m = 1, 2 and λ controls the relative importance of the associ-
ation term. The trained model is now able, for example, to use the

1 Yin et al. consider d(p, q) to be the symmetric KL divergence between p
and q, defined as d(p, q) = KL(p ∥ q)+ KL(q ∥ p).
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Fig. 5. Architecture of the Associational VAE (AVAE) from Yin, Melo, Billard, and Paiva (2017) for inputs with multiple modalities (see main text for details).
Fig. 6. Architecture for VAE supporting cross-modality inference from Suzuki, Nakayama, and Matsuo (2016). The model comprises a VAE for each of the two input
modalities and a ‘‘joint’’ encoder for the combination of the two.
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modality specific encoder qφ1 to generate a latent vector z from
he single modality input x1, and then use this latent vector z as
n input for the decoder pθ2 to generate the missing modality x2,
uccessfully performing cross-modality inference. The approach
f Yin et al. was limited to two modalities and unable to consider
oint-modality information (having access to both x1 and x2) for
he generation of modality data. To address these issues, Suzuki
t al. (2016) proposed an extension of the model, depicted in
ig. 6. The architecture can be seen as a combination of multiple
AEs, one for every individual modality, and one ‘‘joint’’ encoder
or every possible combination of modalities. This model, while
ot limited to two modalities, presents an obvious disadvantage:
ts dimension grows rapidly with the number of input modalities.

The models of Yin et al. and Suzuki et al. highlight a key
ifficulty in designing these models:

(i) Scalability: The model must ‘‘merge’’ the information from
the different input modalities, in order to perform cross-
modality inference. As more modalities are considered in the
model, such merging should be efficient, scaling gracefully
with the number (and dimensionality) of the input modal-
ities. The use of multiple ‘‘sub-models’’, as in the work of
Suzuki et al. (2016) does not scale well with the number of
modalities and is, therefore, unsuited to deal with situations
with a large number of modalities.

he difficulty identified above is common to other approaches
hat consider multiple modalities (Korthals, Rudolph, Leitner,
esse, & Rückert, 2019; Ma, McDuff, & Song, 2019; Tian & En-
el, 2019; Tsai, Liang, Zadeh, Morency, & Salakhutdinov, 2018;
edantam, Fischer, Huang, & Murphy, 2017).
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To address the scalability issue (i) in the design of multimodal
enerative models, Wu and Goodman (2018) proposed to em-
loy an implicit joint-modality encoder, composed of some func-
ion f of single-modality distributions. In this work, the authors
roposed a joint-modality encoder composed of a product-of-
xperts (POE) factorization of single-modality encoders with a
rior-expert qφ(z|x) ∝ p(z)

∏M
m=1 qφm (z|xm), as shown in Fig. 7.

enoted by Multimodal VAE (MVAE), the approach is able to scale
o arbitrarily large number of modalities without requiring the
reation of specific ‘‘sub-models’’ to account for combinations
f modalities. In order to be able to perform cross-modality
nference, the model of Wu et al. requires a sub-sampling training
cheme that considers ELBO terms for complete (joint) observa-
ions, for single-modality observations and for partial observa-
ions with randomly chosen subsets of modalities. For scenarios
ith two modalities, i.e., an input x = {x1, x2}, this corresponds
o a loss function:

MVAE(D) = ℓ1,2(D)+ ℓ1(D)+ ℓ2(D) (9)

here the whole-observation term is defined as:

1,2(D) =
N∑

n=1

KL(qφ(z|xn) ∥ p0(z))− Ez∼qφ (·|xn)
[
log pθ1 (x

1
n|z)

+ log pθ2 (x
2
n|z)

]
, (10)

and the (partial) individual ELBO terms are now defined as:

ℓm(D) =
N∑

KL(qφ(z|xmn ) ∥ p0(z))−Ez∼qφ(·|xmn )

[
log pθ1 (x

m
n |z)

]
. (11)
n=1
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Fig. 7. Architecture for VAE supporting cross-modality inference with an implicit joint-modality encoder qφ (z|x1, x2), composed of some function f of single-modality
encoder distributions qφ1 (z|x1), qφ2 (z|x2). The MVAE model proposed by Wu and Goodman (2018) considers a product-of-experts (POE) factorization with a prior-expert
qφ (z|x) ∝ p(z)qφ1 (z|x1)qφ2 (z|x2).
Fig. 8. Architecture for VAE supporting cross-modality inference by Shi et al. (2019). Employing an implicit joint-modality encoder, the MMVAE defines a
ixture-of-experts (MOE) over the single-modality distributions qφ1 (z|x1), qφ2 (z|x2).
This training scheme presents an obvious disadvantage: the
number of ELBO terms in the loss function grows rapidly with the
number of input modalities. In addition, the model presents an-
other less-obvious disadvantage: developed for weakly-
supervised learning scenarios, where joint-modality information
may not be fully available during training, the POE solution is
prone to overconfident expert prediction, often of the higher-
dimensional modality (e.g. images) (Shi, Siddharth, Paige, & Torr,
2019). As such, the model is able to infer missing low-dimensional
information (e.g. label) from high-dimensional modalities (e.g.
image), yet struggle with the inverse inference process.

Recently, Shi et al. (2019) proposed a novel model, denoted
y Mixture-of-Experts MVAE (MMVAE), that employs an implicit
ixture-of-experts (MOE) joint-modality encoder, qΦ (z|x) =∑M
m=1 αm qφm (z|xm), with αm = 1/M under the assumption that

the modalities are of similar complexity. As shown in Fig. 8, the
MOE solution incurs on some computational overhead due to the
necessity of computing M2 passes over the single-modality de-
coders, as each modality provides samples from its own encoding
distribution to be evaluated by all generative models. For two
modalities, i.e., x = {x1, x2}, this results in a loss function:

ℓMMVAE(D) =
1
2

N∑
n=1

2∑
m=1

Ez∼qφ (·|xmn ) log
[
pΘ (x1n, x

2
n, z)

qΦ (z|x1n, x2n)

]
(12)

However, the MOE solution proposed by Shi et al. (2019)
resents a significant disadvantage for cross-modality inference:
o infer missing modality data, the model is only able to con-
sider the information provided by a single available modality.
For example, given two available modalities x1, x2, the model
randomly chooses a single modality to generate a latent represen-
tation and, subsequently, infer information regarding a third non-
available modality x3. This issue is significantly aggravating in
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scenarios where, instead of redundant information, the different
modalities provide complementary information to characterize
the underlying phenomena.

The models of Shi et al. (2019) and Wu and Goodman (2018)
highlight two more key difficulties in designing multimodal gen-
erative models with implicit joint-modality encoders:

(ii) Generalization: The model must be able to infer missing
modality information from provided available information,
regardless of the nature and complexity of both target and
input modalities.

(iii) Compositionality To perform cross-modality inference the
model must be able to account for the information pro-
vided by all available modalities. As more modalities are
made available, the model should be able to consider the
redundant and complementary information they provide
in order to generate a more adequate multimodal latent
representation.

Other approaches proposed the factorization of the multi-
modal representation into separate, independent, representa-
tions (Hsu & Glass, 2018; Lee & Pavlovic, 2020; Tsai et al., 2018).
Tsai et al. (2018) proposed a factorized model that encodes a
multimodal representation separated into multimodal discrimi-
native factors and modality-specific generative factors. Hsu and
Glass (2018) proposed to disentangle (modality-specific) style
and semantic generative factors in a factorized way. However,
by factorizing the multimodal representations into independent
generative factors, both models are unable to perform cross-
modality inference when some modalities are unavailable, for
example when label information is unavailable. By requiring
explicit semantic (label) information to encode the discriminative
factors, the models are unable to address the generalization
issue.
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Other recent approach by Sutter, Daunhawer, and Vogt (2020)
proposed the use of a MoE joint encoder with a novel Jensen–
Shannon-Divergence loss, in order to overcome the significant
computational cost of training the original MMVAE model, and
the use of factorized modality-specific representation spaces to
improve the generative capabilities of the MMVAE model. How-
ever, similarly to the MMVAE model, this approach is unable to
address the compositionality issue.

In parallel, some solutions consider the problem of learning a
disentangled multimodal representation, either in a single-latent
representation (Daunhawer, Sutter, Marcinkevičs, & Vogt, 2021)
or in multiple factorized representations (Lee & Pavlovic, 2020):
Daunhawer et al. (2021) propose a single-latent representation
model that learns to disentangle modality-specific and invariant
factors in a self-supervised way. Lee and Pavlovic (2020), quite
similarly to the work of Tsai et al. (2018), explore the disen-
tanglement problem considering the factorization of modality-
specific and multimodal factors, using a Product-of-Experts
solution to merge multimodal information. In this work we
explore learning multimodal representations without requiring
disentanglement, as the full assessment of the benefits of enforc-
ing disentanglement in representation learning remains an open
question (Locatello et al., 2019).

We address the issues brought up by computational
approaches to the cross-modality inference process. In a recent
work, four criteria for the successful learning of a multimodal
representation were posited (Shi et al., 2019). The issues pre-
sented in this work can also be considered as desiderata for the
learning process of multimodal generative models and, as such,
we can naturally establish associations with those criteria: for
example, the generalization issue shares the same concerns as
the ‘‘Coherent Cross Generation’’ criteria. In this sense, the issues
presented here can also be employed as evaluation criteria of
the quality of multimodal generative models. We instantiate such
evaluation in Section 6.

In this work, we develop a model that graciously scales with
an arbitrary number of modalities, addressing the scalability (i)
issue, and is able to successfully perform robust cross-modality
inference considering all information provided to the model and
regardless of the target and available modalities nature and com-
plexity, addressing both the generalization (ii) and the compo-
sitionality (iii) issues.

4. Human representation learning

We now turn the attention to the case of human represen-
tation learning. Humans are provided with a complex cognitive
framework that allows for multimodal perception. Several regions
of the brain are responsible for the convergence of multimodal
information, even in areas once thought to process only unimodal
information (Ghazanfar & Schroeder, 2006). These regions contain
multimodal neurons that respond to stimuli from multiple sen-
sory modalities, whose behaviour begins to be uncovered with
the development of novel brain imaging techniques (Burianová
et al., 2013; Calvert, 2001; Man, Kaplan, Damasio, & Damasio,
2013; Marstaller & Burianová, 2014).

The Convergence–Divergence Zone (CDZ) framework is widely
employed to explain the neural mechanisms of human multi-
modal perception (Damasio, 1989; Meyer & Damasio, 2009). In
the CDZ model, depicted in Fig. 9, two different sets of neu-
ron ensembles are proposed: (i) lower-level ensembles in early
sensory and motor cortices, responsible for the processing of
modality-specific information; and (ii) higher-level ensembles in
association cortices, responsible for the processing of multimodal
information. According to the framework, the high-level neuron
ensembles (multimodal) do not hold a composite version of the
243
Fig. 9. The CDZ framework, proposed by Damasio (1989). The model dis-
tinguishes between modality-specific neuron ensembles in early sensorimotor
cortices and higher-order neural ensembles in multimodal association cortices.
In the CDZ framework, information is propagated from the modality-specific
cortices (orange, dashed arrows) to first-order CDZs, which, in turn, project
back information (blue, full arrows) to the early cortical sites. Modality-specific
information from low-order CDZs is propagated forward in order to encode a
multimodal representation of the observed phenomena in higher-level associa-
tion cortices (CDZn). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. The cross-modality inference process in the CDZ framework, proposed
by Damasio (1989): in this example, available information (image of a dog) is
collected by the visual sensors of the human and forward processes in order to
encode a multimodal representation, from which information is back-propagated
to the remaining (absent) perceptual modalities.

original perceptual information, but instead hold a record of the
arrangement of the low-level neural ensemble activity generated
by the perception of a given object (Damasio, 1989). The existence
of higher-level multisensory convergence zones can be observed
experimentally. The superior colliculus of the human midbrain
contains multimodal neurons that respond to visual and audi-
tory stimuli, in part responsible for the orienting behaviour of
moving one’s gaze towards the source of a sound (Bell, Meredith,
Van Opstal, & Munoz, 2005; Edwards, Ginsburgh, Henkel, & Stein,
1979).

The CDZ framework also provides a graceful explanation of the
human cross-modality inference process. As depicted in Fig. 10,
the available perceptual information results in the activation
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a

Fig. 11. Network representation of the Nexus model, highlighting the two-level
rchitecture and the relation between the observed variables x1, . . . , xM , the

modality-specific latent variables z1, . . . , zM and the multimodal context latent
variable zσ .

of modality-specific low-level neural ensembles, whose activity
patterns are forward projected to the high-level multimodal en-
sembles. Subsequently, the high-level ensembles propagate infor-
mation back to the modality-specific neural ensembles, inducing
activity that is coherent to the (absent) perceptual phenomena.
Such cross-modality activations have been observed experimen-
tally as well. For example, the visual observation of lip move-
ment (e.g. when observing a muted video clip) results in the
retro-activation of early auditory cortices, whose activity pattern
resembles that of the expected sound, despite sound not being
provided in the current sensory environment (Bourguignon et al.,
2020; Calvert et al., 1997). Cross-modality activations have been
observed for other sensory modalities, such as the activation of
auditory and olfactory cortices by reading words with auditory
or olfactory meaning, respectively (González et al., 2006; Kiefer,
Sim, Herrnberger, Grothe, & Hoenig, 2008).

The parallel between biological and computational representa-
tion learning further motivates our work in multimodal
representation learning. In particular, in this work we take in-
spiration from the CDZ model and leverage hierarchy to design
a novel hierarchical generative model able to perform efficient
cross-modality generation.

5. The nexus model

The Nexus model can be described by the network architec-
ture depicted in Fig. 11. We consider a scenario with a set of
M modalities of arbitrary nature, x = {x1, x2, . . . , xM}. Inspired
by the CDZ model (Damasio, 1989; Meyer & Damasio, 2009),
we build Nexus considering an hierarchical structure, composed
of two representation levels: at a bottom level we assume that
modality data is generated by a stochastic process mediated by
modality-specific latent variables z = {z1, z2, . . . , zM}. The train-
ing of each modality-specific representation, depicted in Fig. 12,
follows the VAE loss function of Eq. (3), resulting in a total
bottom-level loss ℓb(D),

ℓb(D) =
N∑

n=1

M∑
m=1

KL
[
qφm

b
(zmn | x

m
n ) ∥ p(zmn )

]
− Eqφmb

(zmn |x
m
n )

[
log pθmb

(xmn | z
m
n )

]
, (13)

where qφm
b
(zm | xm) and pθmb

(xm | zm), correspond to the bottom-
level modality-specific encoder and decoder networks. Thus, each
modality-specific latent variable encodes a representation spe-
cialized in the generation of the corresponding modality-specific
data. By considering separate modality-specific latent representa-
tions, each latent space can have an adequate dimensionality to
the complexity of the underlying modality.
 t

244
As shown in Fig. 13, at the top-level Nexus learns a multimodal
representation zσ responsible for the generation of samples of the
modality-specific latent distributions z1, z2, . . . , zM . Following the
multimodal VAE loss of Eq. (5), the training of the multimodal
representation follows the top-level loss ℓt (D),

ℓt (D) =
N∑

n=1

KL
[
qφt (z

σ
n | z̄

1:M
n ) ∥ p0(zσ

n )
]

−

M∑
m=1

E qφb (z̄
1:M
n |x1:Mn )

qφt ( zσn |z̄
1:M
n )

[
log pπm (z̄

m
n | z

σ
n )

]
, (14)

where qφt (z
σ
| z̄1:M ) and pθmt

(z̄m | zσ ), correspond to the
top-level joint-modality encoder and modality-specific decoders,
respectively. The bar symbol over the modality-specific latent
samples z̄1:M denotes that no gradients are propagated through
this value back to the lower-level networks, which we found to
improve the model’s performance.2

The total loss objective of the Nexus model ℓ(D) is given by,

ℓ(D) = ℓb(D)+ ℓt (D)

=

N∑
n=1

(
KL

[
qφt (z

σ
n | z

1:M
n ) ∥ p0(zσ

n )
]

+

M∑
m=1

(
KL

[
qφm

b
(zmn |x

m
n ) ∥ p0(zmn )

]
− Eqφmb

(zmn |x
m
n )

[
log pθmb

(xmn | z
m
n )

]
− E q

φmb
(z1:Mn |x1:Mn )

qφt (z
σ
n |z

1:M
n )

[
log pθmt

(zmn |z
σ
n )

] ))
(15)

It is important to note that learning the multimodal repre-
sentation zσ should be a simpler task than learning a multi-
modal representation in non-hierarchical models: in Nexus, zσ

does not concern itself with the generation of high-dimensional
and complex modality data but only with the generation of
low-dimensional modality-specific latent samples. The modality-
decoders will then decode such samples, specialized in the gen-
eration of high-quality modality-specific data.

Contrary to other works that consider distinct modality-
specific and discriminative representation spaces to generate
multimodal data (requiring label information in the process),
the hierarchical design of Nexus allows for cross-modality in-
ference regardless of the nature of the provided modalities:
modality-specific data is generated only from its corresponding
modality-specific latent variable, which in turn is generated from
the multimodal context latent variable. By leveraging hierarchy,
we address directly the generalization issue presented in Sec-
tion 3. We show the fundamental role of hierarchy to generate
coherent, high-quality, data in Section 6.2.

5.1. Joint-modality encoder

We now turn to the question of how to define the multi-
modal joint proposal distribution qφt (z

σ
|z1:M ) in order to encode

a representation able to tackle the remaining issues discussed
in Section 3: how to learn such representation in a way that
is (graciously) extendable to an arbitrary number of modalities
(scalability issue) and that is able to consider the information
provided by all available modalities (compositionality issue).

2 For simplicity of notation, we will not employ the bar notation throughout
he remaining of the paper.
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Fig. 12. Architecture of the modality-specific networks of the Nexus model, instantiated for a scenario with two modalities, highlighting the relation between the
observed variables x1, x2 , the modality-specific latent variables z1, z2 .
Fig. 13. Architecture of the multimodal networks of the Nexus model for a scenario with two modalities, highlighting the relation between the modality-specific
atent variables z1, z2 and the multimodal contextual latent variable zσ .
We introduce the aggregator joint-modality encoder, a novel
olution to approximate the joint-modality proposal distribution,
s depicted in Fig. 14. Following recent work in Graph Neu-
al Networks (Hamilton, Ying, & Leskovec, 2017), we approach
he encoding process of multimodal data as a Directed Acyclical
raph (DAG), in which the nodes of the graph correspond to the
odality-specific latent representations z1:M and the multimodal

atent representation zσ . Each modality-specific representation
as a single directed edge towards the multimodal note zσ . We
an define the flow of information in the graph as:
σ
← f (z1, z2, . . . , zM ), (16)

here we define an aggregator function f (M)
: {k1, . . . , kM} →

σ
∈ Rk, responsible for aggregating the information provided by

ach modality-specific representation. As the aggregator function
equires that the samples provided are of common dimensional-
ty, we preprocess those samples using modality-specific mapping
etworks qφm

t
(zm) to reduce all samples to a common dimension-

lity dk. We can define the multimodal encoder qφt (z
σ
| z1:M ):

qφt (z
σ
| z1:M ) := qφt

(
zσ
| f

(
k1, k2, . . . , kM

))
. (17)

Several choices of an aggregator function can be employed,
rom simple concatenation to more complex recurrent networks,
uch as RNNs and LSTM. Empirically, we found a simple mean
unction to be suitable for the aggregation procedure. By employ-
ng an aggregator function, we allow the multimodal encoding
rocedure to consider an arbitrary number of modalities, thus
ddressing the scalability issue presented in Section 3. Moreover,
he multimodal representation is able to be encoded considering
nformation provided by all available modalities (or any subset of
vailable modalities), thus addressing the compositionality issue.
Aggregator functions have been extensively employed in ma-

chine learning literature. Recently, of particular interest, these
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methods became a core component of Neural Processes (Gar-
nelo et al., 2018) and of Generative Query Networks (Eslami
et al., 2018). Even in such complex networks, simple aggregator
functions have shown remarkable performance in merging infor-
mation: a mean function for Neural Processes (similarly to Nexus)
is used to summarize image encoded inputs and a additive func-
tion for Generative Query Networks is used to summarize image
observations. However, to the best of our knowledge, Nexus is
the first model to employ an aggregator function as a multimodal
encoder to merge information provided by different modalities.

5.2. Forced Perceptual Dropout (FPD) training scheme

While the aggregator function is able to consider any subset
of available modalities to encode the multimodal representation
zσ , by always providing all modalities during its training, the
model might lack robustness to missing modalities at test-time
and, as such, not be able to perform CMI. To address this issue,
we propose a novel training scheme for the multimodal encoder
which we denote by Forced Perceptual Dropout (FPD), whose
pseudo-code is presented in Algorithm 1.

During training, given a complete latent set z1:Mn = {z1n , . . . ,
zMn }, we define a smaller ‘‘available’’ subset zdn ∈ z1:Mn of modality-
specific latent representations by sampling latent samples from
an Uniform distribution (without replacement) over the complete
set z1:Mn . The number of representations to consider is also sam-
pled from an Uniform distribution U{1,M − 1}. For each sample
in the batch, the model determines if the dropout mechanism is
to be applied by sampling from a Bernoulli distribution,

1d
n ∼ Bern (ρ), (18)

where the user-defined parameter ρ defines the probability of
dropout occurring. Finally, we define the multimodal encoder
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Fig. 14. The aggregator joint-modality encoder qφt (z
σ
| z1:M ) employed by Nexus, instantiated in a scenario with two modalities x1, x2: the modality-specific latent

samples z1, z2 are initially mapped to a common-dimensionality latent code representation k1, k2 ∈ Rk . The information provided by the codes is merged using an
ggregator function f , resulting in an aggregated code kσ which is encoded to generate the top-representation latent space zσ .
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Algorithm 1 Forced Perceptual Dropout (FPD)

1: Input: Dropout parameter ρ; batch-size N; batch of modality-
specific latent codes z1:M = {z1, . . . , zM}

2: for each sample in batch n = 1, 2, . . . ,N do
3: Define zn = z1:Mn
4: Sample Dropout indicator 1d

n ∼ Bern (ρ)
5: if 1d

n = 1 then
6: Sample available subset zdn ∈ zn
7: Encode zσ

n ∼ qφt (· | z
d
n )

8: else
9: Encode zσ

n ∼ qφt (· | zn)
0: end if
1: end for

qφt (z
σ
| z1:Mn ) accordingly to the following rule:

qφt (z
σ
| z1:Mn ) =

{
qφt (z

σ
| zdn ), if 1d

n = 1
qφt (z

σ
| z1:Mn ), otherwise

(19)

We repeat the FPD procedure for each sample in a training
batch. Other multimodal models employ similar mechanisms to
improve robustness to missing modalities, such as the subsam-
pling training scheme of MVAE (Wu & Goodman, 2018). However,
that scheme requires multiple forward passes of the whole batch
of data through the model (and multiple gradient computations),
proportional to the number of possible combinations of modali-
ties, and, as such, is computationally intensive in scenarios with
large number of modalities. On the other hand, FPD is applied
in a single forward pass, reducing the computational training
overhead.

By employing FPD to train Nexus, we are forcing the model
to learn to encode a multimodal representation, able to gener-
ate all modality-specific representations, despite not being given
complete multimodal information. In this way, we explicitly ac-
count for the CMI process during training and promote the ro-
bustness of the model to missing-modality information at test-
time. We evaluate the role of FPD and the dropout parameter ρ
for the robustness of the multimodal representation encoded in
Appendix A.

6. Evaluation

We evaluate quantitatively and qualitatively the performance
of Nexus in performing CMI, accordingly to three criteria brought
up by the issues presented in Section 3: able to consider an
arbitrary number of modalities (scalability), able to improve the
uality of the multimodal representation considering the (redun-
ant and complementary) information that multiple modalities
 a

246
provide (compositionality) and able to generate coherent, high-
quality, data regardless of the target modality (generalization).

Likelihood-based metrics are often employed to evaluate the
enerative capabilities of multimodal models (Suzuki et al., 2016;
u & Goodman, 2018). However, such metrics are not suitable to

valuate cross-modality generation due to the lack of a defined
arget sample, required to compute the probabilistic likelihood.
nother recent approach employs accuracy-based metrics (Shi
t al., 2019). However, accuracy metrics are not able to eval-
ate the quality of the generated samples, only their semantic
oherence given the provided data.
To address the lack of quantitative metrics suitable for eval-

ating the computational CMI process, we propose two comple-
entary evaluation metrics, represented in Fig. 15:

• Accuracy — evaluates if the samples generated by CMI are
semantically coherent with the available modality data that
was provided to the model, e.g. generated images from label
7 should be classified as image samples of that digit. Higher
is better.
• Modality Frechet Distance (MFD) — evaluates if the sam-

ples generated by CMI are similar to the original samples
in the dataset, e.g. generated images from label 7 should
account for the different ways an image of the digit 7 can
be handwritten. This metric is not considered for symbolic
modalities (e.g. discrete labels). Lower is better.

To evaluate accuracy, in each dataset, we employ pretrained
modality-specific classifiers and evaluate the accuracy of gener-
ated samples (higher is better). To evaluate MFD, in each dataset,
we employ pretrained class-based and modality-specific autoen-
coders, responsible for encoding a representation of the provided
samples. For each class k ∈ [0, K ] in the dataset, we encode
epresentations of samples both from the dataset and gener-
ted by cross-modality inference, resulting in a distribution of
eal dataset representations N (µk

r , Σk
r ) and of generated repre-

entations N (µk
g , Σk

g ). The encoding procedure of both distri-
utions is performed by pretrained class-and-modality-specific
uto-encoders. The MFD score F is then given by the Frechét
istance between the two distributions, averaged over all classes
Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2017):

=
1
K

∑
k

µk
r − µk

g

2
+ Tr

(
Σk

r +Σk
g − 2

(
Σk

r Σ
k
g

)1/2)
. (20)

he same classifiers and class-and-modality-specific autoencoders
re employed in the evaluation of all considered models. In
ppendix B.2 we present the architecture and training hyperpa-
ameters of the classifiers and autoencoders.

In order to understand the role of the hierarchical extension

nd the proposed aggregation joint-modality encoder for efficient
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Fig. 15. Pictorial description of the CMI evaluation metrics employed for Multimodal Generative models in this work. We evaluate both the semantic coherence
of the generated samples (accuracy), as well as their quality (MFD) A robust CMI performance should provide samples in the high accuracy and low MFD regime
regardless of the complexity or nature of the target modality.
cross-modality inference, we consider two different variations of
the Nexus model:

• Nexus — The full proposed model employing the joint-
modality aggregation encoder introduced in Section 5.1 and
the FPD training scheme;
• Nexus-0 — The Nexus model employing a naive concate-

nation of the modality-specific codes and the FPD training
scheme, allowing the evaluation of the role of considering
hierarchical representation spaces;

We evaluate Nexus against state-of-the-art variational-
autoencoder-based multimodal generative models that are able
to address the fundamental conditions for computational cross-
modality inference: (i) able to consider an arbitrary number of
modalities; (ii) able to consider modalities of arbitrary nature,
e.g., without requiring semantic information (labels). As such, we
select the two baselines able to account for such restrictions:
the MVAE model and the MMVAE model, employing the authors’
publicly available code3. For evaluation purposes we employ the
same training hyperparameters and network architecture across
all models, presented in the Appendix. For fairness, we train all
the models according to the standard loss functions made avail-
able by the authors without importance sample weighting. The
prior and likelihood distributions of all modalities are assumed
to be Gaussian, except for the label modality which is assumed
to follow a Bernoulli distribution.

Our evaluation aims at addressing the issues of computa-
tional CMI, presented in Section 3. We evaluate Nexus in mul-
tiple scenarios with different number (and nature) of modalities
(scalability). In Section 6.4, we show that the cross-modality
accuracy metric improves as more modalities are made available
to Nexus (compositionality). Finally, we show that Nexus is the
nly model able to generate samples in the high accuracy and low
FD regimes, regardless of the target modality (generalization).
he computational code employed in this work can be down-
oaded from https://github.com/miguelsvasco/nexus_pytorch.

3 The MVAE model is taken from https://github.com/mhw32/multimodal-
ae-public and the MMVAE model is taken from https://github.com/iffsid/
mvae.
247
6.1. Multimodal handwritten digits dataset

To provide a natural scenario to evaluate CMI and to ad-
dress the lack of a dataset with a large number of modali-
ties, we contribute the ‘‘Multimodal Handwritten Digits’’ (MHD)
dataset, a benchmark dataset containing images, motion trajec-
tories, sounds and labels associated with handwritten digits. The
MHD dataset contains 6000 samples per digit class of images,
trajectories, sounds and labels, partitioned in 50,000 training and
10,000 testing samples.

To generate the image and trajectory data, examples of which
are presented in Fig. 16, we resort to the ‘‘UJI Char Pen 2’’ dataset,
from which only one-stroke-formed digits are processed (Llorens
et al., 2008). To address the small number of digit samples pre-
sented in that dataset, we learn a probabilistic model of each
character and re-sample with perturbations constrained in a kine-
matics feature space, following the procedure described in Yin
et al. (2017). This way, we generate 60,000 samples of 28 × 28
greyscale images and 200-dimensional representations of the
associated trajectories. Moreover, we normalize all trajectories to
the unit interval.

To obtain the sound modality we extract from the ‘‘Speech
Commands’’ dataset the samples belonging to the digit classes
(Warden, 2018). We process the original sound waves, with
sample-rate of 16 384 Hz, by truncating their duration to 1 s
and construct a Mel Spectrogram representation, considering a
512 ms hopping window and 128 mel bins. This results in a
128 × 32 representation per audio sample, whose values we
normalize to a 0–1 range. As the number of sounds per class is
less than the required 6000, we divide proportionally the repre-
sentations into training and testing partitions and associate each
representation with a unique image–trajectory pair by sampling
without replacement. We restart the sampling procedure until all
pairs have a corresponding sound representation associated.

6.2. Hierarchical representation

In a preliminary evaluation, we appraise the role of hierarchy
for CMI. For these initial evaluations we consider a subset of the

https://github.com/miguelsvasco/nexus_pytorch
https://github.com/mhw32/multimodal-vae-public
https://github.com/mhw32/multimodal-vae-public
https://github.com/iffsid/mmvae
https://github.com/iffsid/mmvae
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Fig. 16. Samples of images retrieved from the ‘‘Multimodal Handwritten Digits’’ dataset.
a

able 1
esults of the hierarchical evaluation of cross-modality accuracy (higher is
etter), averaged over both modalities, and cross-modality image MFD (lower is
etter), averaged over all classes. Results averaged over 5 independent runs.
(a) Hierarchical models (b) Single-level models

Model Accuracy (%) Image MFD Model Accuracy (%) Image MFD

Nexus 93.4± 05.3 202.4± 44.5 Nexus 96.5± 03.6 260.7± 54.6
Nexus-0 98.2± 01.8 198.0± 40.8 Nexus-0 93.0± 06.9 272.9± 65.8
MVAE 62.9± 31.5 237.0± 41.1 MVAE 16.5± 04.1 150.4± 42.2
MMVAE 91.8± 03.3 286.9± 59.8 MMVAE 91.9± 09.0 217.0± 75.5

MHD dataset, concerning only the image, xi, and label, xl, asso-
ciated with handwritten digit samples. We show the modality-
specific representation spaces of Nexus play a fundamental role
in the generation high-quality image samples through CMI. In Ap-
pendix A we evaluate the key role of the FPD training scheme in
allowing Nexus to learn a multimodal representation robust to
missing modalities at test time.

We implement non-hierarchical versions of the Nexus models
where we input the modality observations directly into the joint-
modality encoder qφt (z

σ
| x). Moreover, to evaluate the potential

of hierarchical architectures regardless of the base model, we also
extend the baseline models with two representation levels fol-
lowing the Nexus architecture. The hierarchical version of MVAE
employs a top-level POE multimodal encoder qφt (z

σ
| z1:M ) ∝

p0(zσ )
∏M

m=1 qφm
t
(zσ
| zm). The hierarchical version of MMVAE

employs a top-level MOE multimodal encoder qφt (z
σ
| z1:M ) =∑M

m=1
1
M qφm

t
(zσ
| zm).

All versions share the same encoder–decoder architectures
(presented in Appendix B.1), except for the bottom-
representation Gaussian sampling layer which is absent in the
non-hierarchical versions of the models. We selected ρ = 0.1
empirically, for the Nexus models. We consider a 16-dimensional
multimodal latent space zσ , a 64-dimensional image latent space
z i and a 5-dimensional label latent space z l. The non hierarchical
models employ a single 64-dimensional multimodal latent space
zσ .

The quantitative results, averaged over 5 independently-
seeded runs, concerning the cross-modality accuracy and im-
age MFD metrics are presented in Table 1 and image samples
resulting from cross-modality generation are shown in Fig. 17.

The results show that Nexus is the only model able to
perform CMI with both high accuracy and low image MFD. For
Nexus the extension to a hierarchical architecture results in
a significant decrease on the MFD metric, resulting in higher-
quality samples as shown in Fig. 17a. This decrease demonstrates
the potential of considering hierarchical representation levels in
the architecture of multimodal generative models: the top mul-
timodal representation learns a representation able to generate
coherent modality-specific latent samples, of lower dimension
and complexity than the modality data itself. The modality-
specific generators interpret these latent samples in order to
generate high quality modality data. Without hierarchy, the same
multimodal representation must be able to encode and generate

the modality-data itself, a more complex task than the former.
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As shown in Table 1, while the accuracy of the generated data
is not significantly affected by hierarchy, the image MFD de-
creases significantly with the hierarchical extension. Regarding
the different multimodal fusion solutions, the results show that
the naive concatenation solution (Nexus-0) performs on par with
the more complex aggregation solution in this simple scenario,
attesting once again to the importance of considering hierarchical
representation spaces to learn multimodal representations.

Regarding the MMVAE baseline, a direct comparison of Figs.
17c and 17f shows that the hierarchical extension of the MMVAE
is able to generate higher-quality image samples than the single-
level version. Such visual inspection seems contrary to the results
regarding image MFD in Table 1. This seemingly contradiction is
due to the computation of the MFD score: the blurriness in the
batches of images generated by MMVAE are interpreted by the
auto-encoders as variability. With the hierarchical extension, the
images become much higher-quality and the lack of variability
becomes evident, as seen in Fig. 17c. Thus, the image MFD score,
on average, increases. Nonetheless, despite the hierarchical ex-
tension, the generated samples still present high MFD, suggesting
that the MoE solution employed by the model is unable to learn
a suitable representation of the modalities.

For the MVAE baseline, the same hierarchical extension results
in a significant increase in the accuracy metric, but also in the
image MFD score. The latter increase is explained by the over-
confident expert problem of the single-level MVAE: the model
learns a multimodal representation that disregards the informa-
tion provided by the lower-dimensional modality in scenarios
with modalities of distinct complexities (784-dimensional images
against 10-dimensional labels). As shown in Fig. 17e, the MVAE
model learns a representation that is able to generate high-
quality images (low image MFD) at the cost of low accuracy.
By extending MVAE with hierarchy, the imbalance between the
modalities decreases as the difference in dimensionality of their
modality-specific representation spaces is smaller than the dif-
ference in dimensionality of the original data. The generation
procedure of the hierarchical version MVAE loses the quality pro-
vided by the overconfident expert but gains in accuracy, as shown
in Fig. 17b. However, the high variance of accuracy reveals that,
despite the hierarchical extension, the CMI generation procedure
is still not robust across all target modalities.

6.3. Standard datasets

In this section we evaluate the performance of Nexus on
two literature-standard datasets: MNIST and FashionMNIST. We
evaluate Nexus against the MVAE and MMVAE baselines, re-
garding single-modality reconstruction accuracy, joint-modality
reconstruction accuracy, cross-modality generation accuracy and
cross-modality MFD. We employ the same model architectures
and training hyperparameters of the prior evaluation. The quan-
titative results of the evaluation of the MNIST and FashionM-
NIST datasets are presented in Table 2. All results are averaged
over 5 independent runs. In addition, we present image samples
generated from label information in Fig. 18.

The results on Table 2 show that Nexus is the only model
ble to encode a multimodal representation capable of generating
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Fig. 17. Samples of Cross-modality generated images from available label information xl = {‘‘0", ‘‘4", ‘‘7", ‘‘9"}, provided by hierarchical (a–c) and single-level (d–f)
multimodal generative models. Nexus is the only model able to perform CMI and generate samples with high accuracy and low MFD (best viewed with zoom).
Fig. 18. Examples of cross-modality image samples considering the MNIST dataset, from labels xl = {‘‘2’’, ‘‘5’’, ‘‘7’’, ‘‘9’’} (a–d), and considering the FashionMNIST
dataset, from labels xl = {‘‘Trouser’’, ‘‘Sandal’’, ‘‘Sneaker’’, ‘‘Bag’’} (e–h). Nexus is the only model able to perform CMI and generate samples with high accuracy and
low MFD (best viewed with zoom).
modality data in the high accuracy and low image MFD regimes,
regardless of given single-modality or joint-modality observa-
tions. Moreover, in this two-modality scenario, the concatenation
solution performs on-par with the aggregator solution, evidence
of the fundamental importance of the hierarchical design for the
result of these models.

Once again, the results of the MVAE model reveal that the PoE
solution employed is the overconfident expert prediction issue:
the model unable to generate semantically coherent modality
data (low cross-modality accuracy), as seen in Fig. 18. Moreover,
the minor increase in accuracy from single-modality observations
249
to joint-modality observations suggests that the model is unable
to consider the information provided by the two modalities,
hinting once again to the overconfident expert issue. Finally, the
MMVAE model is also able to generate semantically-coherent
modality data, even outperforming Nexus in the FashionMNIST
dataset. It does so, however, at the cost of the quality of the
images generated, as shown in Table 2 and Fig. 18, having the
highest image MFD in both datasets.

We can further understand the impact of the hierarchical
configuration of Nexus on the generation of modality-information
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Fig. 19. Images reconstructed from the image-specific latent space z i (a, c) and multimodal latent space zσ (b, d) employing the Nexus model, presenting the original
mage data (top row) and the reconstructed data (bottom row). We highlight samples (in orange) where the abstraction provided by the contextual multimodal
atent space (b, d) allows the generation of more prototypical information, in comparison with the modality-specific reconstructions (a, c). (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
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able 2
ccuracy and image-specific modality Frechet distance metrics for (a) the
NIST dataset and (b) the FashionMNIST dataset. All results averaged over 5

ndependent runs.
(a) MNIST

Model Single-modality
accuracy (%)

Joint-modality
accuracy (%)

Cross-modal
accuracy (%)

Cross-modal
image MFD

Nexus 97.03± 02.97 99.98± 00.02 97.19± 02.88 372.7± 91.9
Nexus-0 97.48± 02.54 99.96± 00.08 97.38± 02.67 365.5± 85.9
MVAE 96.10± 03.61 97.09± 02.82 13.48± 03.31 285.1± 61.7
MMVAE 72.39± 28.75 – 68.06± 30.83 493.2± 134.3

(b) FashionMNIST

Model Single-modality
accuracy (%)

Joint-modality
accuracy (%)

Cross-modal
accuracy (%)

Cross-modal
image MFD

Nexus 82.00± 18.01 88.59± 11.43 74.09± 02.96 120.2± 34.1
Nexus-0 84.14± 15.87 89.49± 10.64 74.59± 03.22 120.7± 34.1
MVAE 85.24± 14.47 87.79± 11.99 20.91± 07.95 112.8± 40.2
MMVAE 85.46± 14.50 – 83.46± 06.54 133.4± 52.7

from the multimodal representation by considering the modality-
information reconstruction procedure. Modality-information can
be reconstructed directly at the lower-level modality-specific rep-
resentation space or be reconstructed from the top-level multi-
modal representation space.

We present reconstructed samples from both representation
paces for the MNIST and FashionMNIST datasets in Fig. 19. The
amples show that the images reconstructed from the multi-
odal representation zσ are more prototypical than the samples

econstructed from the modality-specific representation z i. We
an understand such abstraction given the hierarchical nature of
he representation spaces in Nexus: the modality-specific repre-
entations encode an abstraction of high-dimensional modality
nformation, generating low-dimensional codes. Such low-
imensional codes are encoded and generated by the top mul-
imodal representation space, which learns to generate coherent
odality-specific codes, providing another layer of abstraction.
hile resulting in a lower variability of samples, as shown in the
igher image MFD evaluation of Table 2, the abstraction provided
y the generation procedure from the multimodal representa-
ion provides a significant advantage to Nexus in comparison
ith non-hierarchical models: the samples generated accentuate
he features that unequivocally define the observed phenomena
in this case, digit class correspondence). This allows Nexus to
enerate coherent modality-information regardless of the target

odality and even in scenarios with a high number of modalities.

250
.4. Multimodal handwritten digits

We evaluate Nexus in a challenging cross-modality generation
cenario that considers the complete set of modalities provided
y the MHD dataset: image xi, trajectory xt , sound xs and label xl.
n this task, depicted in Fig. 20, we show that Nexus is the only
odel able to perform CMI regardless of the target modality and
onsidering the information provided by any subset of available
odalities.
Due to the high complexity of the sound modality, we pretrain
SigmaVAE model to learn a modality-specific representation
f sound. We resort to the authors’ optimal training scheme
nd consider a regularization hyperparameter β = 10 (Ry-
kin, Daniilidis, & Levine, 2020). We employ the pretrained Sig-
aVAE model as the bottom-level sound-specific encoder and
ecoder. For a fair comparison, we evaluate our model against
he hierarchical versions of the baselines, sharing the same net-
ork architectures and training hyperparameters of our own.
or this scenario, the dimensionality of the multimodal latent
pace zσ is increased to 32, to account for the higher number of
odalities. We consider a 64-dimensional image-space z i, a 128-
imensional sound-space zs, a 16-dimensional trajectory-space zt
nd a 5-dimensional label-space z l.
We evaluate the cross-modality generation performance for

ach target modality, as a function of the number of modalities
rovided to the model. The results are shown in Table 3, aver-
ged over all possible combinations of provided modalities and 5
ndependent runs. The results show that the Nexusmodel outper-
orms the other baselines in accuracy across all target modalities.
he accuracy results also show that, in this challenging sce-
ario with a large number of modalities, the naive concatenation
pproach is unable to encode a suitable representation when
rovided with incomplete perceptual data. On the other hand, the
roposed aggregation joint-modality encoder allows the model
o generate semantically correct data (as shown by the high
ccuracy), regardless of the number of modalities provided. As the
umber of modalities provided to the model increases, so does
he accuracy of the respective cross-modality generated samples,
ddressing the compositionality issue presented in Section 3.
his is to be expected as the confidence of the model in generat-
ng samples of the correct class increases as more information is
rovided. Contrary to the MMVAE baseline model, the Nexus is

able to take advantage of this additional information provided by
multiple modalities.

Regarding the MFD of the generated samples, Table 3 shows
that Nexus outperforms the other baselines for the target image
modality. For the other modalities, the MVAE baseline is able

to generate samples with lower MFD, once again, at the cost
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Fig. 20. The cross-modality generation task in the Multimodal Handwritten Digit dataset, considering the image xi , trajectory xt , sound xs and label xl associated
with handwritten digits: given any subset of input modalities, the multimodal generative model must be able to generate high-quality, coherent, samples of all target
modalities. We show that Nexus is the only model able to perform cross-modality inference, generating modality-specific information in the with high accuracy and
low MFD regimes.
Source: Image adapted from ‘‘A Girl Writing; The Pet Goldfinch’’ by Henriette Browne (1874).
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Table 3
Evaluation in the MHD dataset, as a function of the number of the observed
modalities provided to the models and the target cross-modality generated
modality (I = Image, T = Trajectory, S = Sound, L = Label). Results for
one modality are averaged over all possible combinations of input modalities
(excluding the target modality). The results for three modalities consider all
modalities (excluding the target modality) in the encoding process. All results
are also averaged over 5 independent runs.
Model Target Accuracy (%) MFD

1 Modality 3 Modalities 1 Modality 3 Modalities

Nexus

I 84.9± 12.4 99.0± 00.2 203.9± 86.3 76.6± 02.8
T 81.0± 10.4 93.8± 01.6 618.3± 264.0 444.4± 36.7
S 77.2± 08.9 94.4± 04.2 22393± 1659 20239± 3411
L 82.0± 06.6 96.9± 00.5 NA NA

Nexus-0

I 49.0± 39.3 99.3± 00.4 265.2± 144.6 94.0± 19.2
T 46.1± 37.3 75.1± 06.8 625.4± 341.9 539.0± 220.1
S 64.8± 10.1 60.0± 07.3 15452± 1152 15778± 1196
L 67.8± 04.3 99.2± 00.3 NA NA

MVAE

I 28.6± 05.2 80.9± 07.2 228.4± 61.8 201.3± 45.2
T 13.7± 04.6 17.8± 03.7 399.3± 179.1 391.0± 178.7
S 33.6± 14.2 88.6± 09.7 6608± 1471 8133± 1751
L 23.4± 13.4 39.9± 07.7 NA NA

MMVAE

I 66.1± 39.8 – 236.9± 62.7 –
T 63.8± 38.1 – 547.8± 235.4 –
S 70.4± 05.4 – 14998± 1325 –
L 66.0± 39.6 – NA NA

of the accuracy of these lower dimensional modalities. This is a
result of the overconfident expert problem of this model. While
the hierarchical extension reduced this effect in the previous
scenario, the same extension is less effective in a scenario where
the differences in dimensionality of the modality-specific latent
spaces are significantly greater.

Overall, the results show that the Nexus model outperforms
he baselines by being the only model considered that is able to
erform CMI with both high accuracy and low rank, regardless
f the target modality considered and the subset of modalities
vailable to the process, addressing the generalization issue. The
esults across all evaluations show that Nexus is able to satisfy
all conditions required for effective computational cross-modality
inference.
251
7. Conclusion

In this work, we presented the Nexus model, a hierarchical
generative model able to learn a multimodal representation of an
arbitrary number of modalities. We have identified three issues
in computational CMI that naturally arise from current multi-
modal generative models. We have shown that, by considering
hierarchical representation levels and a novel training scheme,
Nexus is able to address simultaneously all those criteria, thus
providing a computational model that performs effective cross-
modality inference. Furthermore, we introduced a novel mul-
timodal benchmark dataset of images, trajectories, sounds and
symbols associated with handwritten digits and showed that the
Nexus model outperforms the baseline models in this challenging
scenario. We attested the importance of leveraging hierarchy for
cross-modality generation.

For future work we will address current issues brought up
by the hierarchical nature of Nexus. We will explore the mod-
ular potential that hierarchy provides to Nexus, by consider-
ing pretrained representation models, in scenarios with multiple
modalities. We wish to explore the role of disentanglement for
multimodal representation and other learning techniques, such
as adversarial and contrastive learning, applied to multimodal
hierarchical learning. In addition, we will investigate Nexus as a
erceptual model of reinforcement learning agents equipped with
ultiple sensors, in order to explore the robustness of learned

ask policies in scenarios with changing perceptual conditions.
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Fig. A.21. Results of the evaluation regarding the role of the FPD training mechanism in the CMI performance of the Nexus model, regarding (a) the accuracy and
b) image modality Frechet distance of samples generated by the Nexus model. Results are averaged over 5 independent runs.
.

ℓ

ppendix A. Evaluation of the FPD training scheme

We evaluate the role of the Forced Perceptual Dropout (FPD)
raining scheme, introduced in Section 5.2, in allowing Nexus
to perform effective CMI. To be more precise, we consider the
effect of the value of the dropout parameter ρ of the FPD training
cheme, Eq. (18), on the CMI performance of the Nexus model.
We evaluate, for different values of ρ, the accuracy of the sam-
les generated from information provided by both modalities
all-modality generation), provided solely by its own modality
single-modality generation), and provided by the complemen-
ary modality (cross-modality generation). In addition we evalu-
te the modality Frechet distance of the image samples generated
rom label information. The results are presented in Fig. A.21.

Fig. A.21a shows that Nexus learns a multimodal represen-
ation robust to different values of dropout: the accuracy of
ll-modality generation remains constant until ρ = 1, in which

case dropout is always performed and the model has never been
shown complete multimodal information. However, the occur-
rence of dropout (ρ > 0) during training appears to be fundamen-
tal for coherent single-modality and cross-modality generation: if
no dropout is applied the model is provided only with complete
information during training. This results in a lower average accu-
racy value with higher variance, as the models learn to prioritize
the generation of the higher-dimensional modality (similarly to
the MVAE model), regardless of the modality given as input.

Fig. A.21b reveals that ρ also has a significant effect on the
MFD of images generated by CMI. As ρ increases, the variability
of image information observed and encoded in zσ decreases. This
results in the generation of increasingly prototypical images, with
limited variability, increasing the corresponding MFD score.

Appendix B. Network architectures

We present the network architectures and training hyperpa-
rameters employed throughout the evaluation. All models were
built using Pytorch and evaluated in a machine running Ubuntu
16.04, equipped with a Titan RTX containing 24 GB of dedicated
GPU memory and 96 GB of RAM memory. The computational
code can be downloaded from https://github.com/miguelsvasco/
nexus_pytorch.
252
B.1. Multimodal generative model architecture

We present the generative model networks employed in this
work, which are maintained across all evaluation scenarios. The
modality-specific network architectures are presented in Table B.4
The joint-modality aggregator encoder and the top-level
modality-specific decoders are presented in Table B.5. The base-
line models use the bottom-level encoder–decoder models, forc-
ing the different latent spaces to be of common dimensionality.

B.2. Autoencoder and classifier architecture

We present the architecture of the class-specific, modality-
specific autoencoders, required to compute the modality Frechet
distance metric, in Table B.6. We present the architecture of the
modality-specific classifiers, required to compute the accuracy
metric, shown in Table B.7.

B.3. Training hyperparameters

The total loss objective of the Nexus model ℓ(D) is given by,

(D) = ℓb(D)+ ℓt (D)

=

N∑
n=1

M∑
m=1

(
α KL

[
qη(zcn | z

1:M
n ) ∥ p(zcn)

]
+ βmKL

[
qφm (z

m
n |x

m
n ) ∥ p(zmn )

]
− Eqφm (zmn |x

m
n )

[
λm log pθm (x

m
n | z

m
n )

]
− E qθm (z1:Mn |x1:Mn )

qη (zcn |z
1:M
n )

[
γm log pπm (z

m
n |z

c
n)

] )
(21)

where we introduce specific training hyperparameters to bal-
ance the reconstruction and regularization terms of the different
modalities: the λ and γ parameters balance the reconstruction
of the modality-specific data and representations; the β and α

parameters balance the regularization of the modality-specific
and multimodal latent spaces.

We present the training hyperparameters employed in this
work for the standard evaluation (Section 6.3) in Table B.8 and
multimodal evaluation (Section 6.4) in Table B.9.

https://github.com/miguelsvasco/nexus_pytorch
https://github.com/miguelsvasco/nexus_pytorch
https://github.com/miguelsvasco/nexus_pytorch
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able B.4
rchitecture of the bottom-level, modality-specific, networks (best viewed with zoom).
(a) xi - Image

Encoder Decoder

Input R1+28+28 Input RD

Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish FC, 128 + Swish
Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish FC, 3136 + Swish
Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish Transposed Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish
FC, 128 + Swish Transposed Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish
FC, 128 + Swish Transposed Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Sigmoid
FC, D, FC, D –

(b) xt - Trajectory

Encoder Decoder

Input R200 Input RD

FC, 512 + Batchnorm + Leaky ReLU FC, 512 + Batchnorm + Leaky ReLU
FC, 512 + Batchnorm + Leaky ReLU FC, 512 + Batchnorm + Leaky ReLU
FC, 512 + Batchnorm + Leaky ReLU FC, 512 + Batchnorm + Leaky ReLU
FC, D, FC, D FC, 200 + Sigmoid

(c) xs - Sound

Encoder Decoder

Input R1+128+32 Input RD

Convolutional, 1 × 128 kernel, (1,1) stride, (0,0) padding + Batchnorm +
Leaky ReLU

FC, 2048 + Batchnorm + Leaky ReLU

Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm +
Leaky ReLU

Transposed Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm
+ Leaky ReLU

Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm +
Leaky ReLU

Transposed Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm
+ Leaky ReLU

FC, D, FC, D Transposed Convolutional, 1 × 128 kernel, (1,1) stride, (0,0) padding + Sigmoid

(d) xl - Label

Encoder Decoder

Input R10 Input RD

FC, 128 + Batchnorm + Leaky ReLU FC, 128 + Batchnorm + Leaky ReLU
FC, 128 + Batchnorm + Leaky ReLU FC, 128 + Batchnorm + Leaky ReLU
FC, 128 + Batchnorm + Leaky ReLU FC, 128 + Batchnorm + Leaky ReLU
FC, D, FC, D FC, 10 + Softmax
Table B.5
Architecture of the (a) joint-modality aggregator encoder and (b) top-level
modality-specific decoder networks (best viewed with zoom).
(a)

Encoder

Input RDi Input RDt Input RDs Input RDl

FC, dk FC, dk FC, dk FC, dk
Aggregator function f
FC, 512 + Batchnorm + Leaky ReLU
FC, 512 + Batchnorm + Leaky ReLU
FC, D

(b)

Decoder

Input RD

FC, 512 + Batchnorm + Leaky ReLU
FC, 512 + Batchnorm + Leaky ReLU
FC, 512 + Batchnorm + Leaky ReLU
FC, Dm
253
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able B.6
rchitecture of the modality-specific autoencoder models (best viewed with zoom).
(a) Image autoencoder, with |h| = 128.

Encoder Decoder

Input R1+28+28 Input RD

Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish FC, 128 + Swish
Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish FC, 3136 + Swish
Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish Transposed Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish
FC, 128 + Swish Transposed Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Swish
FC, 128 + Swish Transposed Convolutional, 4 × 4 kernel, 2 stride, 1 padding + Sigmoid
FC, D, FC, D –

(b) Trajectory autoencoder, with |h| = 64.

Encoder Decoder

Input R200 Input RD

FC, 512 + Batchnorm + Leaky ReLU FC, 512 + Batchnorm + Leaky ReLU
FC, 512 + Batchnorm + Leaky ReLU FC, 512 + Batchnorm + Leaky ReLU
FC, 512 + Batchnorm + Leaky ReLU FC, 512 + Batchnorm + Leaky ReLU
FC, D, FC, D FC, 200 + Sigmoid

(c) Sound autoencoder, with |h| = 512.

Encoder Decoder

Input R1+128+32 Input RD

Convolutional, 1 × 128 kernel, (1,1) stride, (0,0) padding + Batchnorm +
Leaky ReLU

FC, 2048 + Batchnorm + Leaky ReLU

Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm +
Leaky ReLU

Transposed Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm
+ Leaky ReLU

Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm +
Leaky ReLU

Transposed Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm
+ Leaky ReLU

FC, D, FC, D Transposed Convolutional, 1 × 128 kernel, (1,1) stride, (0,0) padding + Sigmoid
.

Table B.7
Architecture of the modality-specific classifier models (best viewed with zoom)
(a) Image classifier

Input R1+28+28

Convolutional, 5 × 5 kernel, 1 stride, 0 padding + ReLU +
Dropout(p = 0.2)
MaxPool (2,2)
Convolutional, 5 × 5 kernel, 1 stride, 0 padding + ReLU +
Dropout(p = 0.2)
MaxPool (2,2)
FC, 128 + Dropout(p = 0.2)
FC, 64 + Dropout(p = 0.2)
FC, 10

(b) Trajectory classifier

Input R200

FC, 512 + Batchnorm + Leaky ReLU
FC, 512 + Batchnorm + Leaky ReLU
FC, 128 + Batchnorm + Leaky ReLU
FC, 10

(c) Sound classifier

Input R1+128+32

Convolutional, 1 × 128 kernel, (1,1) stride, (0,0) padding + Batchnorm +
Leaky ReLU
Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm +
Leaky ReLU
Convolutional, 4 × 1 kernel, (2,1) stride, (1,0) padding + Batchnorm +
Leaky ReLU
FC, 128 + Batchnorm + Leaky ReLU
FC, 64 + Batchnorm + Leaky ReLU
FC, 10
254
Table B.8
Training hyperparameters for the standard evaluation scenario, presented in
Section 6.3.
Parameter Value

Training Epochs 100
Learning rate 10−3
Batch-size 64
Optimizer Adam
λi 1.0
λl 50.0
β i 1.0
β l 1.0
γ i 1.0
γ l 50.0
βc 1.0

Table B.9
Training hyperparameters for the multimodal evaluation scenario, presented in
Section 6.4.
Parameter Value

Training Epochs 100
Learning rate 10−3
Batch-size 64
Optimizer Adam
λi 1.0
λt 50.0
λs 1.0
λl 50.0
β i 1.0
β t 1.0
βs 1.0
β l 1.0
γ i 1.0
γ t 50.0
γ s 1.0
γ l 50.0
βc 1.0
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