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ABSTRACT
This work proposes a novel model-free Reinforcement Learning
(RL) agent that is able to learn how to complete an unknown task
having access to only a part of the input observation. We take inspi-
ration from the concepts of visual attention and active perception
that are characteristic of humans and tried to apply them to our
agent, creating a hard attention mechanism. In this mechanism,
the model decides first which region of the input image it should
look at, and only after that it has access to the pixels of that region.
Current RL agents do not follow this principle and we have not
seen these mechanisms applied to the same purpose as this work.
In our architecture, we adapt an existing model called recurrent
attention model (RAM) and combine it with the proximal policy op-
timization (PPO) algorithm. We investigate whether a model with
these characteristics is capable of achieving similar performance
to state-of-the-art model-free RL agents that access the full input
observation. This analysis is made in two Atari games, Pong and
SpaceInvaders, which have a discrete action space, and in CarRac-
ing, which has a continuous action space. Besides assessing its
performance, we also analyze the movement of the attention of
our model and compare it with what would be an example of the
human behavior. Even with such visual limitation, we show that
our model matches the performance of PPO+LSTM in two of the
three games tested.

KEYWORDS
Reinforcement Learning, Model-Free, Attention Mechanism, Hard
Attention, Active Perception, Visual Attention

1 INTRODUCTION
In our everyday lives, even though we are constantly being flooded
with visual stimuli, we do not give the same importance to ev-
erything in our field of view. Instead, we focus on small regions
that attract us the most. In those moments, we take advantage of a
cognitive process called visual attention [4]. Unconsciously, we in-
terpret those regions and extract meaning from them using another
mental process named perception [15]. The combination of both
these processes allows us to solve complex tasks because, from all
the visual information we receive, we filter the most important to
perform our activities and not pay attention to irrelevant elements
in our surroundings.

Current Reinforcement Learning (RL) models, even though they
achieve excellent performance in a broad range of tasks, do not
follow this behavior typical of humans. For example, when learning
to play a video game, RL algorithms typically process the whole
input image, giving the same importance to every region of the

input game frame. Such design results in models that rely on large
convolutional neural networks (CNNs) that process a large number
of pixels, making the model take too long to train, requiring high
computational power, and potentially limiting their applicability [8].
To keep the training time reasonable, images are often preprocessed
to reduce the size of the input, losing some of its details. Using these
low-resolution images can hamper the models from completely
understanding what is present in their input, which lowers their
performance [19].

To overcome these limitations, in this paper we contribute the
first RL architecture that implements an attention mechanism sim-
ilar to the one humans have. Applying such a mechanism allows
the model to only process the pixels it perceives as the most useful,
which makes it much more computationally efficient and able to
use the original images without resizing them.

Attention mechanisms such as the one described above recently
started appearing in the literature, but none of themwere applied to
the same purpose as this work. The closest to our work is, perhaps,
the model proposed by Mnih et al., called recurrent attention model
(RAM) [12], which implements the same attention mechanism we
use in our work in the context of image classification. The authors
introduce the concept of glimpse, a retina-like representation of a
portion of an image centered around a location 𝑙 . The region of the
image around 𝑙 has high resolution; regions further away from 𝑙

have increasingly lower resolution. Such representation is crucial
to the performance of the agent and is what makes the complexity
of the model not dependent on the size of the input images. Instead,
it depends on the size of the glimpses. The RAM paper uses four
networks: one responsible for extracting the glimpses from an im-
age and learning features from them; a Long Short Term Memory
(LSTM) network that builds an internal representation of the envi-
ronment combining the information from all the previous glimpses;
one network responsible for the classification of the image received,
and another that chooses the coordinates of the next glimpse.

There is also a number of other models that apply different types
of attention mechanisms. For example, the work of Tang et al. [18]
is an example of an RL agent that is capable of achieving top perfor-
mance in games such as CarRacing [9] and DoomTakeCover [14].
Their agent starts by dividing the input video frame into patches,
assigning a level of importance to each one of them. Then, it selects
the𝐾 most important patches and extracts features from them. This
information is later used by a controller which selects the actions to
take. Although this model only has around 3600 parameters, since
it is trained using a computational intensive evolutionary strategy
called Covariance-Matrix Adaptation Evolution Strategy (CMA-ES),
it takes a long time to train.
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In this paper, we address the following research questions:

(1) Is it possible to attain state-of-the-art performance in com-
plex control tasks with limited (but active) perception?

(2) Is there any similarity between the attention movements of
the model and human behavior?

To address these questions, the paper proposes a novel architecture
that combines a glimpse-based attention mechanism with a model-
free reinforcement learning algorithm (PPO). Our results show our
model can match the performance of PPO+LSTM in two of the
three games tested while processing a significantly smaller number
of pixels from the input images. Our model has fewer training
parameters than its vanilla counterparts and is, therefore, more
efficient than existing models that apply attention mechanisms.

In the remainder of this paper, we go over the modifications we
have made to the RAM [12] architecture, showing how our model
compares against multiple versions of the PPO algorithm when
playing video games such as Pong, SpaceInvaders, and CarRacing.
In the end, we analyze the movement of the attention of our model
and compare it with what would be an example of human behavior.

2 BACKGROUND
This section introduces the core concepts and notation used in the
remainder of the document.

2.1 Active Perception and Attention
The concept of active perception was defined by Bajcsy as the intel-
ligent acquisition of information about an environment in order to
understand it better [2]. In comparison to a passive perception agent
that statically senses its environment and takes actions accordingly,
an active perception agent can improve its performance by actively
moving its sensors to better reason about its environment [10].

In artificial intelligence, active perception models can be imple-
mented using deep learning methods such as CNNs [10]. Since the
selection of what an agent should sense can take inspiration from
the human visual attention process, an attention mechanism can
be used to replicate such behavior. In machine learning, attention
is a technique that consists in choosing which parts of the input
are the most important, resulting in more computational power
being allocated to them. In the literature [6, 20, 21], we can find
two categories of attention mechanisms:

• Soft attention: is a mechanism that splits the input into
multiple parts, assigning a weight to each one of them. The
weights represent the importance associated with each por-
tion of the image, and since this model is differentiable, they
can be updated using backpropagation.

• Hard attention: is a mechanism where the model does
not go through some parts of its input because the neu-
ral network itself stochastically decides which are the parts
it should pay attention to. However, this mechanism is not
differentiable but can be trained using RL.

The model from Tang et al. [18] used a soft attention mechanism,
while in our work, we use a hard attention mechanism.

2.2 Reinforcement Learning
In RL, an agent interacts with its environment and learns, by trial
and error, an action-selection rule (a policy) that maximizes the
agent’s reward over time.

In our problem, the agent does not have full observability of
the environment, so the best mathematical framework to formally
represent this problem is a Partially Observable Markov Decision
Process (POMDP). A POMDP is defined as a tuple (S,A,Z,P,O, 𝑟 ),
where S is a discrete set of states, A is a discrete set of actions,
Z is a discrete set of observations, P(𝑠 ′ | 𝑠, 𝑎) represents the tran-
sition probability of going from state 𝑠 to 𝑠 ′ performing action 𝑎,
O(𝑧 | 𝑠 ′, 𝑎) represent the probability of receiving the observation 𝑧,
while being in state 𝑠 ′ after taking action 𝑎, and 𝑟 (𝑠, 𝑎) is the reward
function 𝑟 : S × A → R.

In our work, we decided to propose a model-free RL architecture
instead of a model-based. We did not choose the latter because
we decided to understand first if an RL model was capable of hav-
ing good performance with such visual restriction while having
a simpler, model-free approach. Building a complete model of the
environment while just seeing a region of it, is another challenge
that we leave for future work. Since we made that decision, our
agent is not able to know either the transition probabilities P or
the reward function 𝑟 of the environment. Therefore, it has to learn,
explicitly by trial and error, the optimal policy 𝜋 : H → Δ(A),
which is a mapping from the history of past observations to a dis-
tribution over actions. One way of learning that policy is using an
actor-critic policy-gradient method. This algorithm learns a param-
eterized policy (an actor) and estimates a value function (a critic).
For our problem, we need two actors: one to learn the action policy
𝜋𝜃 (𝑎 | 𝑧) (Actor), and the other to learn the policy 𝜋𝜇 (𝑙 | 𝑧) that
chooses the coordinates of the image to look at (Locator).

The specific actor-critic method used in this work was the PPO
algorithm, presented by Schulman et al. [17]. PPO is simpler than
other policy gradient methods, well-studied, and was already tried
alongside the RAM architecture [22]. For these reasons, we decided
to have it as the base of our model.

In PPO, we alternate between interacting with the environment
to get data and updating the policy using stochastic gradient ascent.
In every policy update, this policy gradient method guarantees that
the difference between the new policy and the old policy is small,
which prevents the algorithm from having a high variance during
training. Having the probability ratio

𝑟𝑡 (𝜃 ) =
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡 )
𝜋𝜃old (𝑎𝑡 | 𝑠𝑡 )

(1)

and 𝐴𝑡 , an estimator of the advantage function at timestep 𝑡 ,
PPO maximizes the following surrogate objective:

𝐿𝐶𝐿𝐼𝑃 (𝜃 ) = Ê𝑡
[
min(𝑟𝑡 (𝜃 )𝐴𝑡 , clip(𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 )

]
(2)

where 𝜖 is a hyperparameter. The clipping prevents large policy
updates and penalizes the probability ratio 𝑟𝑡 (𝜃 ) when it tries to
move far away from 1.
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3 GLIMPSE-BASED ACTOR-CRITIC (GBAC)
In this section, we introduce a novel model called Glimpse-Based
Actor-Critic (GBAC) that combines a hard attention mechanism
with a model-free RL algorithm. When compared to other RL mod-
els, GBAC processes much fewer pixels, and its training parameters
do not depend on the size of the input, which makes it more effi-
cient.

In our problem, the game environment 𝐸 gives, at each timestep,
a frame 𝑠𝑡 of the game. Since our model cannot have access to
all the information of 𝑠𝑡 , it has to select only a portion of it to
be its observation 𝑧𝑡 . That observation has the coordinates 𝑙𝑡−1 =
(𝑥𝑡−1, 𝑦𝑡−1) that were chosen by the model in the previous timestep.
During its interaction with 𝐸, our agent has to learn the best policy
𝜋𝜃 (𝑎𝑡 | 𝑧𝑡 ) that selects the action 𝑎𝑡 to be performed in the game.
While doing this, the model also has to understand which regions of
𝑠𝑡 have the most valuable information and learn a policy 𝜋𝜇 (𝑙𝑡 | 𝑧𝑡 )
to choose the set of coordinates (𝑥𝑡 , 𝑦𝑡 ) to be taken in the next
timestep.

As we have seen in Section 2.2, this problem can be seen as an
instance of a POMDP. In our case, the observations the agent takes
are represented by the glimpses, and the history of past interactions
with the environment is stored in the hidden state of two LSTMs.
When combining the memory, the current glimpse, and the previ-
ously chosen location, the LSTMs have all the information needed
to learn the policies that select the actions and the locations to take
next.

3.1 Architecture
The architecture of RAM [12] was the basis for our proposal, as a
result, we present it in Figure 1 and will briefly describe it next.

Action 

Network

Location
Network

Core

Network+

Glimpse Network

Figure 1: Architecture of RAM. Image adapted from the orig-
inal paper of Mnih et al. [12]

Every timestep, RAM receives the game frame 𝑠𝑡 and a set of
coordinates 𝑙𝑡−1. Its Glimpse Network takes a glimpse 𝑧𝑡 centered
at 𝑙𝑡−1 and extracts features, not only from 𝑧𝑡 , which are repre-
sented in Figure 1 by 𝑘𝑡 , but also from 𝑙𝑡−1. Using fully connected
layers the two features are merged into the vector 𝑔𝑡 . Next, this
vector is fed to an LSTM, the Core Network, which stores all the
previous information from the glimpses and the coordinates chosen,
building its internal memory ℎ𝑡 . After that, ℎ𝑡 is the input for two
other networks, the Action Network and the Location Network,
which are also fully connected layers that select the next action 𝑎𝑡
and coordinates 𝑙𝑡 , respectively. Since the Location Network was
non-differentiable, it was trained using the policy gradient method
REINFORCE, while the other components used backpropagation.

After the presentation of RAM, some papers proposing improve-
ments to the image classification capabilities of the model were
written, such as the publications of Ba et al. [1] and Zuur [22]. After
the presentation of our architecture, we will describe which refine-
ments we took into consideration and how we have adapted them
to our problem.

Glimpse
Network

Action 

Network

Location
Network

Figure 2: Overview of the architecture of the Glimpse-Based
Actor-Critic

Figure 2 presents an overview of the GBAC architecture. We
start by receiving a game frame 𝑠𝑡 and the set of coordinates 𝑙𝑡−1
our agent chose at the end of the previous timestep. The Glimpse
Network saves into 𝑘𝑡 the features extracted just from the glimpse
taken from 𝑠𝑡 and centered at 𝑙𝑡−1. After that, the vector 𝑘𝑡 is used
as the input of the Action Network. This network outputs not only
the action 𝑎𝑡 the agent will take next, but also an estimate 𝑣𝑡 of
the value function. 𝑘𝑡 is also used by the Location Network, which
merges it with the features extracted from the location 𝑙𝑡−1 to select
the next location coordinates 𝑙𝑡 . In opposition to RAM, instead of
doing this merging for the input of both networks, we only do it
for the Location Network.

We now present the key refinements of RAM that we took into
consideration to address our problem. To start, we followed Ba et
al. [1] and added a CNN to the Glimpse Network (represented in
Figure 3) because it was necessary for the model to extract better
features from the video frames. As one of the experiments done by
Zuur [22] suggested, we also found that it was beneficial to provide
separate inputs for the Action and Location Networks (Figure 2).
Therefore, the configuration which performed best was the one
that fed to the Action Network only the features (𝑘𝑡 ) extracted
from the glimpse, and to the Location Network the vector resultant
from the merge between 𝑘𝑡 and the features extracted from 𝑙𝑡−1.
Still with this idea of separating the processes of choosing the next
action and the next glimpse coordinates, we added an extra LSTM,
making the Action Network and the Location Network use their
separate LSTM (Figures 4 and 5). This separation destroyed the
need for having an explicit Core Network like in RAM, avoiding
the mix of information that is necessary for each task and allowing
us to fine-tune the parameters for each LSTM. The last change we
made was the selection of PPO instead of REINFORCE to train the
model since it achieves better results in harder environments [22]
and we found it simpler to train. This change meant that in each
timestep, our Action Network also needed to make a prediction 𝑣𝑡
about the quality of performing the action 𝑎𝑡 in the current state
of the environment.

3.1.1 Glimpse Network. The Glimpse Network, represented in Fig-
ure 3, is the module responsible for extracting from the game frame,
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the region the agent chose to focus its attention. With the image
coordinates 𝑙𝑡−1 chosen in the previous timestep, this network ex-
tracts an observation 𝑧𝑡 from 𝑠𝑡 , which is called a glimpse. This
glimpse can have multiple patches, each having double the size
of the previous. For example, Figure 3 presents a glimpse with
three patches. However, to simulate peripheral vision, all the larger
patches are downscaled to the dimension of the smallest. That
smallest patch will have the highest resolution, making it the focal
point. Regarding the other patches, the larger they are, the further
away they are from the focus point, so the lower their resolution
is. When compared to the original image, this process results in a
vector with fewer pixels.

After rescaling, the resultant vector passes through a set of con-
volutional layers and a fully connected layer to extract a vector of
features 𝑘𝑡 . The number of convolutional layers and their respective
kernel sizes and stride are changed depending on the size of the
glimpse.

CNN

Figure 3: Detailed diagram of the Glimpse Network of GBAC

During this work, we assumed that the glimpses are always
squares. If the coordinates of 𝑙𝑡 make a patch catch pixels that are
out of the bounds of 𝑠𝑡 , that patch will be moved in order to fit
inside the frame. This mechanism proved to achieve better results
than simply filling the pixels out of bounds with a value.

3.1.2 Action Network. The Action Network, depicted in Figure 4, is
responsible to choose the game action 𝑎𝑡 the agent should perform
in each timestep. Since we chose an actor-critic algorithm to train
GBAC, the Action Network also estimates the value function, which
helps the agent to understand if it is performing well or not.

In this network, its LSTM saves the information 𝑧𝑡 extracted pre-
viously from the glimpse and combines it with its hidden memory
ℎ
𝑔

𝑡−1, which stores all the information gathered in earlier timesteps
to build an internal representation of the game environment. The
new hidden state ℎ𝑔𝑡 is fed to two fully connected layers, the Actor
and the Critic, that output the action 𝑎𝑡 and the value 𝑣𝑡 , respec-
tively.

3.1.3 Location Network. The Location Network, illustrated in Fig-
ure 5, is the module behind the hard attention mechanism and is
responsible to choose the image coordinates 𝑙𝑡 where the agent
should look in the next timestep. Those coordinates are sampled
from a truncated normal distribution whose mean is given by this
network, being the standard deviation a fixed value.

In order to choose the mean value, the Location Network has
a neural network that extracts features from the coordinates 𝑙𝑡−1,

LSTM

Actor

Critic

128

128

Figure 4: Detailed diagram of the Action Network of GBAC

merging them with the features 𝑘𝑡 . The resultant vector 𝑔𝑡 is then
used to update the internal state of an LSTM. Its internal state ℎ𝑙𝑡 is
fed to the Locator, which is a neural network with two fully con-
nected layers and ReLU and Tanh activation functions, respectively.
The Locator chooses the mean value used in the truncated normal
distribution from which the next set of coordinates 𝑙𝑡 is extracted.

LSTM

Locator
256

640

Figure 5: Detailed diagramof the LocationNetwork ofGBAC

Since this model only uses a small portion of an image, its com-
plexity is not dependent on the size of the input image but rather
on the size of its glimpses. This can be an advantage if the model
has to handle large images.

3.2 Training
The training process of our model is very similar to the one pre-
sented by Schulman et al. in the PPO paper [17]. We follow the
suggestions they proposed, and the only difference is that we have
two policy losses, instead of just one. Like PPO, our model alternates
between interacting with the environment to get new information
and updating both its policies with that new data.

When exploring the environment, in each timestep, the model
saves the action and coordinates of the glimpse it chose, the value
function estimated by the critic, the reward received from the game,
and a flag that indicates if the current episode has finished.

After a predetermined number of timesteps, the model uses the
collected data to update its policies. For both policies, we use the
"surrogate" objective already presented in Section 2.2:

𝐿𝐶𝐿𝐼𝑃𝜋 (𝜃 ) = Ê𝑡
[
min(𝑟𝜋𝑡 (𝜃 )𝐴𝑡 , clip(𝑟𝜋𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 )

]
(3)

where 𝜖 is a hyperparameter and the advantage function 𝐴𝑡 is
computed recurring to Generalized Advantage Estimation [16].
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Besides the two policy losses, the objective has two more terms:
an entropy bonus 𝐵 that promotes the exploration of the environ-
ment, and the squared-error loss of the value function, 𝐿𝑉𝐹

𝑡 . With
these additions, the objective’s formula is the following:

𝐿𝑡 (𝜃 ) = Ê𝑡
[
𝐿
𝐶𝐿𝐼𝑃a
𝑡 (𝜃 ) + 𝐿𝐶𝐿𝐼𝑃g𝑡 (𝜃 ) − 𝛼𝐿𝑉𝐹

𝑡 (𝜃 ) + 𝛽𝐵 [𝜋𝑎] (𝑠𝑡 )
]
(4)

where 𝛼 and 𝛽 are coefficients. Note that the entropy bonus is
only calculated for the action policy, not for both policies. Adding
the same bonus for the location policy did not seem to improve the
results, thus we decided to keep the objective simpler.

4 EXPERIMENTAL EVALUATION
In this chapter, we present all the experiments that enabled us
to test our model, establishing which base PPO algorithm is the
fairest choice to compare our model with, and discovering which
size of the glimpses gives better results. In the end, we have all the
information necessary to answer the questions in Section 1. Our
code is available on GitHub.

4.1 Evaluation Process
4.1.1 Game Environments. In order to measure the performance
of GBAC and compare it against the state-of-the-art RL agents, we
selected three game environments with different characteristics.
The first two are both games from the Atari 2600 and have a discrete
action space, while the third, is CarRacing [9] fromOpenAI Gym [3]
and has a continuous action space. We tried to select three games
that were not the easiest ones available and that required the agents
to learn different sets of skills, such that we could see how they
were capable to adapt to each type of task.

In order to obtain the best performance in the Atari games, we
used the same environment modifications proposed by Mnih et
al. [13] and Machado et al. [11], thus leading to better results for
these games. Those modifications are well accepted and used in the
literature. For example, we resize the original frame from 210x160
to 84x84 pixels, clip the rewards, and scale the pixel values to [0, 1].

4.1.2 Comparison Models. We decided to compare GBAC with
three different versions of PPO. The first one is the original PPO
agent presented by Schulman et al. [17] because it was used as
the base for our model. However, since our implementation uses
LSTMs in its architecture and the version of PPO with an LSTM
is also quite common in the RL literature, we decided to choose
the PPO+LSTM agent for comparison as well. The third version of
PPO we used is a modification of the PPO+LSTM algorithm where
the restriction of only using a small portion of the game frame
was imposed. But, different from GBAC, the coordinates where the
agent looks are chosen completely randomly. This allows us to test
if the perception mechanism implemented in our model is better
than one that makes its choices randomly.

The PPO implementation used in this work was not the original
one provided by Schulman et al. [17] in OpenAI Baselines [5], but
rather a revised implementation presented by Shengyi et al. [7] that
closely follows the performance of the original. This implementa-
tion provides many versions of PPO including one with an LSTM.
To make the PPO agents capable of playing the selected games, we

added to their architecture a CNN with the same layout as the one
presented in the DQN paper [13].

By comparing GBAC with the first two versions of PPO, we can
discover if it is possible to achieve state-of-the-art performance
playing video games, despite having a limited (but active) percep-
tion of the environment, which was our first question.

4.1.3 Evaluation Metrics. Evaluating RL models is never a straight-
forward task due to their high variance. For this reason, during
training and testing, we average the episodic return each agent
achieved over the last 100 episodes.

In training, Pong, SpaceInvaders, and CarRacing learned dur-
ing 15 million, 20 million, and 5 million timesteps, respectively.
Then, the agent that achieved the best performance over the last
100 episodes is tested for another 100 episodes. For each configura-
tion, the results are always the average over three runs and their
respective standard deviations are also presented.

Seeding is another aspect that can have an impact on the per-
formance of the agent. Certain seeds can make the agent perform
significantly better or worse. Thus, in each run, the seed used in
the environment is chosen arbitrarily.

Regarding the policy that chooses the locations of the glimpses,
in order to understand if our model learns a behavior that resembles
the human vision, we analyze the evolution of the policy throughout
the training phase and present a visual representation of the results.
This is the information we need to answer our second question.

Now that the entire evaluation process is detailed, we present,
in the next sections, the results we obtained.

4.2 Base Models Selection
In contrast to one of the Atari optimizations proposed by Mnih et
al. [13] and Machado et al. [11], our model does not perform better
when the original image is resized. In fact, it never learned a way to
beat its adversary in Pong when a glimpse smaller than the resized
size of 84x84 was used. This meant that with that setup, we could
not take advantage of the glimpse’s structure because the model
needed the entire image to perform well, which does not follow the
restriction of our problem. An explanation for this result can be the
fact that since the glimpses taken by GBAC have multiple patches
that end up being resized to a lower resolution, and the input frame
fed to the model was also resized, the loss in information might be
so much that our agent is not capable of solving the game.

Therefore, to make the comparisons fair, we decided that the
base PPO models should also use the entire image as input. In order
to discover how much this decision could impact the performance
of the base agents when playing the two Atari games, we studied
the difference in performance between using the original 210x160
image and the resized 84x84 input. In CarRacing, since the original
image is just 96x96, we decided not to compare the base models with
a resized version of the input. In addition, since GBAC uses LSTMs,
we compared PPO with PPO+LSTM to find out if they perform any
differently.

In Table 1, we show the training and testing performances that
PPO and PPO+LSTM had when using either the full image frame
or the resized input. The results shown do not allow us to conclude
with absolute certainty that one way is better than the other. In
Pong, there are not any significant differences in performance either
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PongNoFrameskip-v4 SpaceInvadersNoFrameskip-v4 CarRacing-v0
Model Full Img. Max. Train Avg. Test Avg. Max. Train Avg. Test Avg. Max. Train Avg. Test Avg.

PPO No 21.00 ± 0.01 20.98 ± 0.02 2090.00 ± 254.16 2013.07 ± 244.56 – -
PPO Yes 20.91 ± 0.11 20.83 ± 0.13 2261.90 ± 295.87 2221.62 ± 201.31 867.16 ± 6.64 824.31 ± 8.04
PPO + LSTM No 20.11 ± 0.25 20.00 ± 0.31 1182.57 ± 259.03 1077.63 ± 245.82 - -
PPO + LSTM Yes 20.03 ± 0.23 19.85 ± 0.39 900.20 ± 79.16 812.58 ± 111.51 783.62 ± 11.58 659.73 ± 24.42

Table 1: Comparison between the training and testing performance of PPO and PPO+LSTM, using a resized frame (84x84) of
the input and also the full game frame (210x160)

in regular PPO or in PPO+LSTM. In SpaceInvaders, for the regular
PPO, the agent that uses the full image achieves average returns that
are around 200 points better than the agent that resizes the input.
This result indicates that, for this game, some useful information
is lost during the resizing of the image. However, for the model
that uses PPO+LSTM, the opposite is verified. Since the size of the
LSTMs was the same in both cases, this suggests that for the full
image, the LSTM needed to be bigger because it could extract better
data from fewer pixels.

From the same table, when comparing the PPO agent against
PPO+LSTM for the same type of input, we can see that the use of an
LSTM deteriorates the performance of the agent. Having in mind
that in the PPO game, a match ends when a player reaches 21 points
and the reward of the agent is the difference between the points
scored and scored against, the difference between the two models is
marginal. It only means that, on average, the PPO+LSTM agent let
the opponent score one point, while PPO did not. In SpaceInvaders,
the performance drops by half, which is a significant reduction.
In CarRacing, there is also a drop in performance, even though it
is less accentuated than in SpaceInvaders. The major difference
between the PPO and PPO+LSTM models is that the former uses
a stack of four frames as input, while the latter receives just one
frame at a time, counting on its LSTM to discover and store the
information that is useful to the agent. Therefore, in SpaceInvaders
and in CarRacing, the LSTM is not able to store all the information
needed, like the velocity and direction of the objects from the game,
which would allow the agent to perform better.

In short, from these results, we cannot conclude that using the
resized frame is better than using the full frame, and since our
model utilizes the full image, in order to make the comparisons
fairer, with as many equal variables as possible, from here onwards,
we will be referring to the version that uses an LSTM and the entire
frame as input when mentioning the base model.

4.3 GBAC Performance Analysis
In this section, we study not only the impact that different sizes of
glimpses and different numbers of patches have on the performance
of our agent but also how the best configuration performs against
the three versions of PPO.

In our architecture, each glimpse can have one or more patches.
Since we stipulated that each new patch has double the size of the
previous, increasing the number of patches results in glimpses with
a smaller focus region. This means that if we want glimpses with
two patches, the largest possible size for the smallest patch is 80x80,
with three patches it will be 40x40, and with four patches 20x20.

The higher the number of patches, the larger the "peripheral vision"
of our model. Nonetheless, this increase in information comes with
the price of it not being as detailed as the portions of the image
closer to the focal point.

With this in mind, besides their architectures, using glimpses
with just one patch makes our model no different from the base
PPO agents. Therefore, the results from the agents that use glimpses
with one patch are just useful to compare the two architectures,
and to discover how large the input image has to be, in order for
the agent to maintain its performance. Therefore, the results that
are relevant to understand the performance of our model are the
ones given by configurations that use more than one patch.

4.3.1 Pong. In relation to the Atari game Pong, Table 2 presents
the maximum training average and the testing performance of the
three PPO versions, as well as the best glimpse size for each number
of patches of our agent. Since the returns for this game are bounded
between -21 and +21, when analyzing the performance of all the
agents, we can see that one of three scenarios occurred: the agent
learned how to beat its adversary and ended up with scores close to
+20; the agent did not manage to learn anything useful, resulting in
scores around -19; or the timesteps were not enough for the agent
to learn a good policy so it achieved a score between the previous
two.

PongNoFrameskip-v4
Model Glimpse Max. Train Avg. Test Avg.

PPO - 20.91 ± 0.11 20.83 ± 0.13
PPO+LSTM - 20.03 ± 0.23 19.85 ± 0.39
GBAC 1p, 160x160 7.61 ± 10.42 6.95 ± 10.89
GBAC 2p, 80x80 7.15 ± 20.80 6.64 ± 21.14
GBAC 3p, 40x40 20.06 ± 0.44 19.82 ± 0.88
GBAC 4p, 20x20 -14.86 ± 5.39 -15.77 ± 4.82
PPO Random 3p, 40x40 -19.87 ± 0.05 -20.16 ± 0.11

Table 2: Training and testing performance in Pong

Regarding the glimpses with one patch, our agent did not manage
to achieve scores near +20 with the larger glimpse consistently
because, in two of the three runs, the agent was still improving its
performance when the timesteps finished. Therefore in this game,
our agent was not capable of matching the performances of PPO.
With two patches, the results were slightly better than the previous
because the standard deviation is much higher. The model achieved
a score of around +19 in two of the three runs. Using three patches,
GBAC was capable of matching the performance of the PPO+LSTM
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agent, consistently beating its opponent by 21-1. The difference to
the regular PPO agent, only means that our agents let the opponent
score a point, while the other did not. After seeing the results until
this point, we might think that the performance keeps improving
while we increase the number of patches of each glimpse. However,
this is not the case when we look at the scores achieved using four
patches. The size of the patches was so small that our model was
not capable of achieving a performance of +20 in, at least, one of
the three runs, which was true in any of the previous results.

Regarding the PPO agent that took glimpses at random locations,
we see that it performed very poorly, not being able to learn an
optimal policy to play Pong. Therefore, we can say that, in this
game, choosing good glimpse locations matters.

4.3.2 SpaceInvaders. Table 3 shows the training and testing results
of all the agents for the SpaceInvaders game.

SpaceInvadersNoFrameskip-v4
Model Glimpse Max. Train Avg. Test Avg.

PPO - 2261.90 ± 295.87 2221.62 ± 201.31
PPO+LSTM - 900.20 ± 79.16 812.58 ± 111.51
GBAC 1p, 160x160 741.45 ± 392.54 607.42 ± 287.84
GBAC 2p, 80x80 444.18 ± 40.78 341.47 ± 25.71
GBAC 3p, 40x40 596.50 ± 182.35 544.43 ± 166.79
GBAC 4p, 20x20 439.72 ± 26.27 378.00 ± 28.70
PPO Random 3p, 40x40 516.62 ± 60.59 467.38 ± 50.53

Table 3: Training and testing performance in SpaceInvaders

Starting with the results of our model for one patch, we found
that this time, the average score of GBAC was closer to the one
achieved by the PPO+LSTM agent. However, when considering the
results for the glimpses with two patches, the performance dropped
almost by half. With three patches, GBAC achieves the best perfor-
mance when considering the use of more than one patch. Nonethe-
less, the model is not able to match the performance achieved when
it used the bigger glimpse with just one patch. With four patches,
we have the same decrease in performance, already seen in Pong.
However, this time it was not as severe and slightly beat the results
from two patches while having the smallest standard deviation in
both training and testing of any of the experiments.

In this game, our model was not capable of matching the per-
formance of the PPO+LSTM agent, however, we still consider it
an interesting result, considering the viewing restrictions of our
problem. While processing 86% fewer pixels than PPO+LSTM (4.800
vs. 33.600) in each timestep, GBAC only had a performance drop of
33%.

In this game, the random agent has a performance that is on par
with our model, which possibly means that in SpaceInvaders the
location of a glimpse is not that important. One possible reason
behind this proximity could be the fact that, in this game, GBAC
can pay attention to a lot more things that can improve the return
received from the environment. As opposed to Pong, where our
agent only had three objects (two paddles and one ball) to keep
track of.

4.3.3 CarRacing. Lastly, Table 4 shows the performance that GBAC
and the other agents achieved during training and testing, when
playing the CarRacing game, which has a game frame of size 96x96.

CarRacing-v0
Model Glimpse Max. Train Avg. Test Avg.

PPO - 867.16 ± 6.64 824.31 ± 8.04
PPO+LSTM - 783.62 ± 11.58 659.73 ± 24.42
GBAC 1p, 96x96 815.12 ± 5.75 660.02 ± 69.38
GBAC 2p, 40x40 694.50 ± 107.94 641.11 ± 57.42
GBAC 3p, 20x20 676.82 ± 84.89 564.00 ± 56.42
PPO Random 2p, 40x40 622.41 ± 17.89 589.87 ± 13.19
Table 4: Training and testing performance in CarRacing

Like in the other two games, here, the largest glimpse size is
also the one that achieves the better result for a glimpse with one
patch. In addition, this time our model was capable of matching
the performance of the PPO+LSTM agent in testing and beating it
during training. For two patches, the achieved results maintained
the performance seen in testing when using one patch, even though
the score in training decreased and had a much higher standard de-
viation. With three patches, which in CarRacing was the maximum
number we tested, we start to see the performance drop slightly.

In this game, GBAC was capable of maintaining its performance
across all number of patches, which is a good result since the scores
closely match the PPO+LSTM agent.

Regarding the PPO agent with random glimpses, the perfor-
mance difference is again not that far behind our model. Since the
generated track occupies a good portion of the image, it may be eas-
ier for the random model to select good actions from every glimpse
it receives.

From this study, we can conclude that even when using the entire
frame (glimpses with one patch) the performance of our model
is capable of matching the performance of PPO+LSTM, although
not consistently. This shows our architecture could compete with
PPO+LSTM if we did not impose our restrictions. Additionally,
we discovered that the performance of GBAC does not increase
linearly with the number of patches. It reaches a point where the
information lost with the reduction of the glimpse size is more
significant than the information gained with the addition of another
patch. The optimal number of patches is three for the Atari games
and two for CarRacing. Those numbers of patches proved to be
the right balance between having a patch size that discarded the
irrelevant information, allowing the model to just focus on the most
important, and not being too small such that after rescaling the
large patches, it was still possible to understand what was present
in the "peripheral vision" of the agent. Finally, we saw that in most
cases, the largest glimpse size possible for each number of patches
is the one that produces the best results. In CarRacing, for two and
three patches this was not the case, and the sizes 48x48 and 24x24,
respectively, did not give the best results, even though they were
very close.

An important fact we should mention is that, since the com-
plexity of our model is independent of the size of the input, we
can achieve these results with a model that, in the Atari games,
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(a) Pong 40x40 Glimpse (b) Pong Heatmap (c) SpaceInvaders 40x40 Glimpse (d) SpaceInvaders heatmap

Figure 6: Frames with glimpses of 3 patches and heatmaps representing the number of times during an episode that the agent
chose a specific set of image coordinates to be the center of the glimpse, for the Pong and SpaceInvaders games respectively

has 15% fewer total training parameters (∼1.7M vs. ∼2.0M) than
the PPO+LSTM model, and almost the same number has PPO. In
CarRacing, since the actions are continuous, the model is bigger,
but it still has 10% fewer parameters than PPO+LSTM (∼2.2M vs.
∼2.5M) and only more 70k than PPO. If we use bigger environments
having frames with many more pixels, this difference between the
number of training parameters required will only keep increasing.

4.4 Glimpse Movements Analysis
After discovering how GBAC performs against the other models, it
is also important to understand how the location of its glimpses is
evolving throughout training and which behavior the model finds
outs to be the best. While making this analysis, we also compare
the agent’s decisions with the choices we would consider when
playing the games.

Regarding the regions that our best agents chose to look at during
the episodes, we can see in Figure 6b and Figure 6d that, for the
Atari games, their distribution is relatively similar in both games.
In SpaceInvaders, our agent keeps its focus near the center of the
image, while in Pong, it chooses locations slightly upwards from
the center. In general, the distribution of locations in both games
has more choices closer to the center and becomes more sparse the
further they are from it.

Having the focus point almost near the center of the image, as
we can see in Figure 6b, means that, in Pong, the agent gets the
location of each paddle from its "peripheral vision" (Figure 6a). We
think that this choice is different from what a human would select
to focus on in this particular game. We believe that a human would
pay more attention to the position of its own paddle and the ball.

In relation to SpaceInvaders, in our opinion, the choices are much
closer to what a human would do because the agent keeps its focus
on the lower rows of enemies (Figure 6c), which are the ones that
need to be destroyed first.

Regarding Car Racing, our model presents quite unusual be-
havior during the training process. It starts similarly to the other
two games with a circular normal distribution for the location co-
ordinates (Figure 7a). However, after a few training epochs, that
distribution starts dispersing over multiple parts of the entire image,
ending up with the region shown in Figure 7b, creating some kind
of borders, which constrain the choice of coordinates, and that do

(a) Beginning of training (b) Middle of training

Figure 7: Heatmaps representing the evolution of glimpse
locations in the CarRacing game

not correspond to the limits of the image. This last behavior is the
one that is present in the best solution at the end of training.

In our opinion, even though in two of the three games, our model
does not follow exactly what we think is the human vision behavior
when playing those video games, we would need a more systematic
way of analyzing the regions that we select to focus our attention,
using, for example, an eye-tracking device, to better compare the
agent’s behavior in relation to humans.

5 CONCLUSION
This work proposed a solution for the problem of an agent that
has limited vision, and for that reason, besides deciding which
action it has to take in the environment, it also has to choose which
part of the environment it should look at. To solve this problem,
we proposed GBAC, a model that combines a glimpse-based hard
attention mechanism with a model-free RL algorithm.

We started by proving that, for some games like Pong and CarRac-
ing, our model is already capable of achieving similar performance
to the PPO version that more closely resembles our model, that is,
the variant that also uses an LSTM. On other games like SpaceIn-
vaders, a drop in performance is verified, with means, there still
is room for improvement. We finished concluding that our model
does not necessarily choose the same regions of the image that we
selected to look at when we played the video games ourselves. Only
in SpaceInvaders we considered this was verified. In addition, in
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CarRacing, we are not able to explain the reason behind the unusual
behavior of our model.
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A EXTENDED RESULTS

PongNoFrameskip-v4 SpaceInvadersNoFrameskip-v4
No. Patches Glimpse Size Max. Train Avg. Test Avg. Max. Train Avg. Test Avg.

1 160 7.61 ± 10.42 6.95 ± 10.89 741.45 ± 392.54 607.42 ± 287.84
1 150 -18.96 ± 1.67 -19.32 ± 1.38 384.43 ± 72.19 338.45 ± 59.50
1 140 -18.93 ± 1.80 -19.36 ± 1.47 386.50 ± 75.94 347.08 ± 99.27
1 130 -19.92 ± 0.04 -20.19 ± 0.03 330.76 ± 77.16 265.00 ± 53.71
1 120 -19.86 ± 0.04 -20.06 ± 0.05 343.98 ± 137.35 273.00 ± 113.99
1 110 -19.89 ± 0.11 -20.22 ± 0.08 381.66 ± 85.91 340.12 ± 77.90
1 100 -19.89 ± 0.05 -20.24 ± 0.11 321.91 ± 51.51 256.78 ± 77.16
1 90 -19.65 ± 0.42 -19.90 ± 0.36 285.76 ± 61.01 214.35 ± 23.69
1 80 -19.90 ± 0.01 -20.28 ± 0.05 244.53 ± 7.94 190.83 ± 26.97
1 70 -18.47 ± 1.30 -18.88 ± 1.08 243.08 ± 23.85 186.83 ± 19.25
1 60 -19.89 ± 0.05 -20.16 ± 0.09 232.95 ± 17.10 214.58 ± 13.55
1 50 -19.63 ± 0.54 -19.80 ± 0.56 251.46 ± 33.61 190.62 ± 22.40
1 40 -19.93 ± 0.04 -20.19 ± 0.11 218.78 ± 2.93 163.42 ± 14.12
1 30 -19.95 ± 0.03 -20.17 ± 0.17 221.73 ± 4.20 170.33 ± 21.35
1 20 -19.75 ± 0.32 -20.11 ± 0.25 244.51 ± 4.90 203.97 ± 23.26
1 10 -19.87 ± 0.07 -20.23 ± 0.06 238.90± 15.14 188.23 ± 32.58
2 80 7.15 ± 20.80 6.64 ± 21.14 444.18 ± 40.78 341.47 ± 25.71
2 70 -6.68 ± 22.92 -6.99 ± 22.80 371.68 ± 58.30 296.10 ± 36.34
2 60 -19.86 ± 0.05 -20.27 ± 0.18 371.21 ± 6.30 350.15 ± 10.13
2 50 -16.72 ± 5.48 -17.17 ± 5.20 283.81 ± 76.94 217.58± 62.06
2 40 -19.91 ± 0.03 -20.19 ± 0.07 252.58 ± 22.31 194.52 ± 26.93
2 30 -17.24 ± 2.34 -17.52 ± 2.43 248.98 ± 5.78 208.03 ± 7.23
2 20 -19.87 ± 0.07 -20.17 ± 0.16 241.50 ± 10.81 190.52 ± 31.40
2 10 -19.91 ± 0.06 -20.24 ± 0.09 243.51 ± 5.16 209.43 ± 32.67
3 40 20.06 ± 0.44 19.82 ± 0.88 596.50 ± 182.35 544.43 ± 166.79
3 30 -10.99 ± 10.42 -11.80 ± 9.05 274.38 ± 5.24 212.07 ± 34.62
3 20 -19.92 ± 0.01 -20.12 ± 0.10 293.12 ± 28.46 228.63 ± 28.06
3 10 -19.93 ± 0.03 -20.35 ± 0.39 251.60 ± 12.27 194.13 ± 31.28
4 20 -14.86 ± 5.39 -15.77 ± 4.82 439.72 ± 26.27 378.00 ± 28.70
4 10 -19.86 ± 0.05 -20.23 ± 0.08 297.45 ± 9.98 252.77 ± 13.72

Table 5: Training and testing performance of every glimpse size for every number of patches tested in Pong and SpaceInvaders.
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CarRacing-v0
No. Patches Glimpse Size Max. Train Avg. Test Avg.

1 96 815.12 ± 5.75 660.02 ± 69.38
1 90 675.12 ± 84.89 607.46 ± 39.81
1 80 741.03 ± 112.73 534.56 ± 72.77
1 70 747.12 ± 103.91 258.70 ± 274.03
1 60 692.40 ± 121.21 546.35 ± 40.01
1 50 559.05 ± 19.45 361.30 ± 73.27
1 40 539.68 ± 11.35 485.85 ± 9.80
1 30 187.67 ± 136.04 32.64 ± 81.82
1 20 155.15 ± 77.05 152.99 ± 75.43
1 10 138.51 ± 88.40 128.90 ± 94.17
2 48 748.70 ± 74.90 544.58 ± 132.04
2 40 694.50 ± 107.94 641.11 ± 57.42
2 30 616.74 ± 84.43 347.20 ± 243.31
2 20 465.76 ± 74.51 375.30 ± 164.83
2 10 161.44 ± 36.96 145.80 ± 48.40
3 24 700.53 ± 28.06 472.35 ± 295.73
3 20 676.82 ± 84.89 564.00 ± 56.42
3 10 545.18 ± 92.57 509.85 ± 70.74

Table 6: Training and testing performance of every glimpse size for every number of patches tested in CarRacing.

B ALGORITHMS HYPERPARAMETERS

Hyperparameter Value(s)

PP
O

Advantage normalization True
Annealing learning rate True
Batch size [1024, 2048]
Clipping coefficient - action [0.1, 0.2]
Clipping coefficient - location 0.2
Clipped value loss True
Entropy coefficient [0.01, 0]
GAE lambda 0.95
Gamma 0.99
Grayscale True
Learning rate - action [2.5e-4, 3e-4]
Learning rate - location 3e-5
Locator normal distrib. variance 0.1
Maximum gradient clipping norm 0.5
Minibatch size [256, 64]
No. environments [8, 1]
No. minibatches [4, 32]
No. steps [128, 2048]
Optimizer Adam
Update k epochs [4, 10]
Value function coefficient 0.5

G
lim

ps
e

Glimpse scale 2
Glimpse FC layer size [384, 512]
Location FC layer size 256
LSTM size 128
No. glimpses 1

Table 7: List of parameters used in GBAC, in the Atari games and CarRacing, respectively
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