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Abstract. This work explores pre-training as a strategy to allow rein-
forcement learning (RL) algorithms to efficiently adapt to new (albeit
similar) tasks. We argue for introducing variability during the pre-trai-
ning phase, in the form of augmentations to the observations of the agent,
to improve the sample efficiency of the fine-tuning stage. We categorize
such variability in the form of perceptual, dynamic and semantic augmen-
tations, which can be easily employed in standard pre-training methods.
We perform extensive evaluations of our proposed augmentation scheme
in model-based algorithms, across multiple scenarios of increasing com-
plexity. The results consistently show that our augmentation scheme sig-
nificantly improves the efficiency of the fine-tuning to novel tasks, out-
performing other state-of-the-art pre-training approaches.
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1 Introduction

Reinforcement learning (RL) approaches have been successfully applied to com-
plex scenarios like games [18,23], robotics [16] and control [17]. In spite of these
sounding success stories, RL methods are known for being “data-hungry”: they
require millions of interaction steps between the learning agent and the environ-
ment, which makes the deployment of RL-based systems extremely expensive
and difficult in real-world scenarios, where such intense levels of interaction are
prohibitive. As an example, Rainbow [12] required over 34,000 GPU hours (over
1,400 days) to train, not considering hyper-parameter tuning [20]. Additionally,
a RL system trained for a particular task often fails to generalize to other, sim-
ilar tasks [11]. Such behavior stands in contrast to the human learning process:
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humans efficiently reuse knowledge of similar tasks (such as motion primitives
and environmental physics) to efficiently learn to perform novel tasks [13]. This
stark difference motivates the need for knowledge transfer approaches that may
help to address the sample-efficiency of RL algorithms.

According to Laskin et al. [15], two families of approaches have been proposed
in literature to address sample complexity of RL methods: (i) introducing auxil-
iary tasks, usually relying on data augmentation approaches, that seek to build
general-purpose representations for the perceptual observations of the agent that
facilitate the learning of control policies [15,21]; and (ii) learning environment
models that allow the generation of artificial samples that can be used for learn-
ing, thus requiring less interactions with the actual environment [9,22]. This
paper builds on the benefits of these two lines of research and addresses the
question: “how does pre-training using different augmentations impact the data
efficiency of fine-tuning model-based RL in novel downstream tasks?”

We focus on the problem of pre-training model-based RL agents and con-
tribute with an in-depth categorization of transferable features across similar
tasks. In particular, we discuss transfer between tasks that share perceptual,
dynamic and semantic features. Driven by our discussion, we contribute a novel
pre-training scheme for model-based RL that exploits such transferable features,
which we name Multiple-Augmented Pre-training Scheme (MAPS). During the
pre-training phase, MAPS introduces multiple variations on the observations of
the agents, obtained from the current task or similar tasks, forcing the learning
of more general-purpose representations and thus improving the efficiency of a
subsequent fine-tuning phase in novel downstream tasks. The introduction of
such variability in data has already been explored in contexts such as computer
vision [5,8] and natural language processing [4,7].

We evaluate MAPS against different pre-training approaches in scenarios of
increasing complexity, considering a state-of-the-art model-based RL framework
(namely, DreamerV2 [9]). We perform an ablation study on the Mini-Grid envi-
ronment that highlights how changes in the perceptual and dynamical conditions
affect the transfer of information in model-based RL to similar tasks. Further-
more, in a more complex Mini-Grid scenario, we highlight the role of further
introducing semantic variability during the pre-training phase, showing that
MAPS outperforms other standard pre-training schemes. Finally, in an Atari
environment, we highlight the scalability of MAPS to more complex scenarios,
and show how pre-training with MAPS significantly improves the fine-tuning
performance. In summary, the contributions of this work are threefold.

— We contribute a categorization of transferable features for the pre-training of
model-based RL agents;

— We introduce Multiple-Augmented Pre-training Scheme (MAPS) that
exploits such features to introduce variability during the pre-training phase;

— We evaluate MAPS against different pre-training approaches in scenarios of
increasing complexity, showing how our approach allows agents to efficiently
fine-tune to novel downstream tasks.
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2 Related Work

Transferring knowledge to new tasks is often related to the field of Transfer
Learning, which seek to bring learning improvements by relaxing assumption
that the data used for learning between old and new tasks must be indepen-
dent and identically distributed [25]. Pre-training is considered the predominant
approach to perform experience transfer: we train a model on an initial task,
also known as pre-training task, and then adapt the model on a new downstream
task, by using the previously learned weights, via fine-tuning [3]. Pre-training
has been successfully applied to a variety of fields beyond RL. For example, in
computer vision, self-supervised representation learning approaches have seen
significant developments, both in contrastive [5,10] and predictive methods [8].
In this work, inspired by these pre-training approaches in computer vision, we
explore self-supervised augmentations in the field of model-based RL.

During the pre-training phase, it is common to train the model on large
amounts of general data, and is common to use other learning objectives that
are only used for pre-training. For example, in SimCLR [5], the authors present a
new contrastive method to pre-train a large model with a large unlabeled dataset
with 1.2 million images, that can then be fine-tuned with a small labeled dataset.
However, in our work we do not have access to a huge dataset with millions of
highly diverse trajectories and millions of diverse games easily available, thus
we try to focus the pre-training on a small set of more similar tasks to attempt
to extract information from these to the desired downstream task. In RL set-
tings, both CURL [15] and ATC [24] propose contrastive auxiliary objectives
for learning general representations of the agent’s environments. However, they
consider only model-free agents and employ only perceptual augmentations. In
this work, we consider how perceptual, dynamical and semantic augmentations
improve the transfer of model-based RL agents. In SGI [21] the authors propose
to employ multiple auxiliary tasks to pre-train and the fine-tune an agent on the
same task, and shown negative results on transferring representations between
Atari games on a small data regime. Contrary to our work, they focus only
on model-free methods, and only use random crops and intense jittering (both
perceptual augmentations). In RAD [14] the authors explore ten different types
of data augmentations, and show how using augmentations while learning the
same task it helps improve the data-efficiency and generalization of RL methods.
Compared with our work, RAD uses only perceptual augmentations and focus
on model-free single task learning.

3 Method

In this work, we address the problem of adapting RL agents to novel downstream
tasks. In particular, we consider a two-stage transfer approach: we initially pre-
train agents on a given task 7}, and subsequently transfer the agents to a novel
downstream task T, where we fine-tune the agents to the novel task.

One of the challenges of the transfer process resides in the difference between
the information provided to the agent in 7}, and in T,;. During the pre-training
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Fig. 1. Our proposed augmentation scheme for efficient adaptation: a perceptual aug-
mentations exploit global transformations of the original observations (in red), such
as color inversion, cropping and flipping; b dynamical augmentations exploit coun-
terfactual transformations of original transitions in the environment (in red), such as
randomly introducing “NoOp” actions; ¢ semantic augmentations exploit conceptual
transformations over the original observations (in red), such as changing the sprites of
the player and objects

phase, the agent experiences a set of observations O, € O, with O the set of all
possible observations in the space of all possible tasks. From such observations,
and auxiliary reward signals provided by the environment, the agent learns to
perform the pre-training task 7. However, during the adaptation phase, the
agent reuses its experience to learn the downstream task 7; from a set of obser-
vations Oq € O, potentially disjoint from O, along with a new reward signal.

However, in many tasks there are intrinsic similarities that, if exploited,
could improve the transfer procedure. For example, despite the differences in the
observations in each scenario, the games “Space Invaders” and “Pepsi Invaders”,
depicted in Fig. 3c, d respectively, share some features between them; both share
similar core semantics and dynamics of a shooting up game.

To exploit the potential intrinsic similarities between the pre-training and
downstream tasks, we propose to introduce augmentations during the pre-
training phase: we expand the set of pretraining observations Oy 2 O, € O
through augmentation functions A(o) to allow the efficient adaptation to down-
stream tasks. In Sect. 3.1, we propose a categorization of augmentation functions
to exploit perceptual, dynamical and semantic similarities between T, and Tj.
Additionally, in Sect. 3.2 we show how our augmentations can be easily intro-
duced into standard pretraining schemes, with minimal computational overhead,
an approach we denote by Multiple Augmented Pre-training Scheme (MAPS).

3.1 Augmentation Scheme

We now focus our attention on the nature of the augmentation functions A(o)
to improve the efficiency of the fine-tuning process on unknown, novel tasks
T4. As shown in Fig. 1, we propose three different categories of augmentations:
perceptual, dynamical and semantic.
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Perceptual Augmentations One of the significant ways observations can
change from the T}, to T; concerns features of the perceptions of the agents,
such as color, orientation and size. We propose to expand the set of observations
O, to introduce such variability by considering perceptual augmentations.

As shown in Fig. 1a, perceptual augmentations correspond to global transfor-
mations on the observations of the agents. These augmentations introduce vari-
ability in general features of the observations, having no impact on the underly-
ing task and dynamics of the environment. Moreover, perceptual augmentations
are agnostic to the semantics in the perception itself (such as the players and
enemies). Examples of such augmentations include color inversion for the whole
observation, or random cropping and mirroring across different axes.

The use of augmentations has been explored by several self-supervision meth-
ods, such as SimClr [5] and CURL [15], that learn transferable representations by
employing visual-based augmentations on image data. In this work, we introduce
two more categories of augmentations to the observations of the agents.

Dynamical Augmentations Another potential change in the sequence of
observations experienced by the agents from the T}, to Ty concerns the dynam-
ics of the environment, i.e., how the environment changes as a function of the
actions of the agent. We propose to expand the standard set of observations O,
in order to introduce such variability by considering dynamical augmentations.
As shown in Fig. 1b, dynamical augmentations correspond to changes on
the observations of the agent, due to transformations on its actions. Contrary
to perceptual augmentations, dynamical augmentations can only be perceived
across multiple time-steps, having no impact in the general features nor in the
semantics of the observation. Examples of such augmentations are operations of
randomly employing “NoOp” actions or swapping the actions of the agent.

Semantic Augmentations Finally, observations from 7}, and Ty can also differ
regarding local, higher-level features of the observations, such as the sprites of
the agent and the enemies. We propose to expand the set of observations O, in
order to introduce such variability by considering semantic augmentations.
Semantic augmentations correspond to local transformations on the observa-
tions of the agent. Much like dynamical augmentations, semantic augmentations
often can only be perceived across multiple time-steps (see Fig. 1c) through spe-
cific visual modifications to game elements such as the player, or surrounding
elements important to solve the task. Contrary to perceptual augmentations,
these augmentations require prior knowledge over the semantics of the observa-
tions. As such knowledge is often difficult to obtain and manipulate in complex
scenarios, we propose to use similar tasks to Ty, such as video games from the
same type or genre, as a way to provide meaningful semantic augmentations.
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3.2 Pre-training with Augmentations

Motivated by recent approaches in self-supervised visual learning [5,15], we argue
that by pre-training an agent on the augmented set of observations Oy, we
force it to learn features that are more general, and thus able to transfer to the
downstream task T,; more efficiently, during the fine-tuning stage.

S B
s
T

Get sequence from Replay Buffer Augmentation Phase Batch creation Phase

Fig. 2. The Multiple-Augmented Pre-training Scheme (MAPS) for efficient transfer of
RL agents to novel similar tasks: initially, we obtain a sequence of observations that
is used to train the agent; subsequently, we augment each specific sequence with a
user-defined transformation; finally, we stack the multiple augmented sequences into a
single training batch.

(a) MicroGrid. (b) MacroGrid (c) Space Invaders (d) Pepsi Invaders

Fig. 3. The environments employed in the evaluation of MAPS.

We denote our simple pre-training scheme with augmentations as Multiple
Augmented Pre-training Scheme (MAPS). In MAPS, as shown in Fig.2 each
training sequence (either from the replay buffer or from the environment) is aug-
mented with a random set of perceptual, dynamical and semantic augmentations.
An augmentation can be applied per time-step or across multiple time-steps
(such as throughout the episode). We then concatenate the diverse augmented
sequences into a single batch, to be used in the training of the RL controller.

Despite the simplicity of the approach, we show in Sect. 4 that the joint pre-
training approach of MAPS is able to outperform other transfer approaches in
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terms of sample-efficiency of the fine-tuning stage. By learning with the help
of augmentations task, MAPS is able to generalize across a larger number of
representations, thus being able to more easily adapt to new games.

4 Evaluation

We evaluate MAPS against other standard pre-training schemes in scenarios of
increasing complexity, showing how our approach allows pre-trained model-based
RL agents to efficiently transfer to novel, similar tasks.

4.1 Experimental Setup

To fully exploit the perceptual, dynamical and semantic variability within
MAPS, we consider two different grid-based scenarios in our evaluation:

— MicroGrid: A smaller 5 x 5 grid world based on MiniGrid (Fig. 3a);
— MacroGrid: A larger 8 x 8 grid world based on MiniGrid, where the visual
observations of the agents are upscaled to 64 x 64 pixels (Fig. 3b).

Both scenarios allow for fine control over the elements of the environment (such
as colors, shapes and grid sizes), facilitating the creation of the necessary percep-
tual and dynamical augmentations for MAPS. In addition, the higher-resolution
MacroGrid scenario allows to exploit semantic variability by changing the object
sprites present in the environment. In both scenarios, we consider the DoorKey
navigation task, which requires that the agent obtains a key to unlock the door
that allows it to reach the goal. We instantiate the following classes of augmen-
tations for MAPS in the grid-based scenarios:

— Perceptual (P): static color changes, color changes on every step, spatial visual
changes;

— Dynamical (D): modifications that do not change optimal policy (random
NoOp action), modifications that change the optimal policy (swap actions);

— Semantic (S): image occlusions (blinking), swap object sprites positions (only
in MacroGrid), use different object sprites (only in MacroGrid).

We employ a subset of 5 different augmentations as modified tasks: two per-
ceptual augmentations (exterior noisy color swap and horizontal image flip), one
dynamic augmentation (random NoOp action) and two semantic tasks (random
black flicker, MacroGrid with semantic data).

Furthermore, we also test the MAPS framework in the Atari game environ-
ment [2], as shown in Fig. 3¢, d , with image-based augmentations as the previous
case. We evaluate the sample-efficiency of MAPS by following the metrics pre-
sented in [26]: an algorithm is more sample efficient than another if it reaches
a higher performance in the same training window. If the algorithms present
similar asymptotic performances, then we compare the jump-start performance
and area under the curve.
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4.2 Pre-training of Model-Based RL Agents

We introduce MAPS in the pre-training phase for a successful transfer of model-
based agents. We initially consider two transfer scenarios: we pre-train the agent
in the MicroGrid or MacroGrid scenario for 225k or 250k time steps, respectively.
Then we transfer the learned world model to learn the downstream task, that
consists of the original task with an augmentation previously not seen during
the pre-training, following the augmentations in Sect.4.1. We compare the fine-
tuning performance of the agents that were pre-trained with MAPS against
agents pre-trained without MAPS and agents without pre-training (learning
from scratch). Furthermore, we also compare the MAPS approach to a meta
learning approach that uses the same data augmentations, as meta learning as
been successfully employed for transfer learning. As such we employ Reptile [19],
a state-of-the-art first-order algorithm, as a baseline.

For these environments, we attempt multiple augmentation settings to bet-
ter ascertain how the increase of pre-training variability can help transfer: single
augmentations in perceptual (P) and dynamical (D) categories, combinations
of augmentations like perceptual-dynamical (P+D) and complete perceptual-
dynamical-semantic augmentations (P4+D+S). We present the evaluation results
for the MicroGrid scenario in Fig.4. Overall, the results show that MAPS has
a significant contribution to a positive transfer to the downstream task. This
improvement is clearly seen for the Ezterior noisy color swap downstream tasks,

0.8
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(a) Exterior noise color swap. (b) Horizontal image flip.
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(c) Random black flicker. (d) Random NoOp action.

Fig. 4. Transfer performance of pretrained agents in MicroGrid to an augmentation
task (T # T4). Results averaged over 10 randomly-seeded runs.
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(a) Exterior noise color swap. (b) Horizontal image flip.
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(c) Random black flicker. (d) Random NoOp action.

Fig. 5. Transfer performance of pretrained agents in MacroGrid to an augmentation
task (T, # Tq). Results averaged over 10 randomly-seeded runs.

where introducing perceptual augmentations with MAPS during pre-training
allows the agent to efficiently adapt to the downstream task. The improvement
can be extended to all other augmentations, where transferring the world model
pre-trained with MAPS results either in a higher asymptotic performance or/and
a better jump-start learning performance. The same results are valid when com-
paring MAPS with Reptile, where MAPS always has a higher asymptotic per-
formance or/and a better jump-start learning performance.

We verify a similar trend in the results for the MacroGrid scenario, pre-
sented in Fig. 5. The results show, once again, that transferring the world model
pre-trained with MAPS results overall in a higher asymptotic fine-tuning per-
formance or/and a better jump-start fine-tuning performance. Moreover, in the
MacroGrid scenario we can also evaluate the transfer to tasks with distinct
semantic features (such as when changing the sprites of the objects in the envi-
ronment). We present such results in Fig. 6: only the agent that pre-trains with
MAPS, considering perceptual and semantic augmentations, is able to positively
transfer to this challenging task, with a significant jump-start fine-tuning per-
formance over the baselines. The results also show that MAPS outperforms or
has similar performance to the meta-learning approach of Reptile, thus showing
that joint-training of tasks can still be a strong alternative over meta-learning
methods. Overall, the results attest to the importance of introducing variability
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regarding perceptual, dynamical and semantic features using MAPS during the
pre-training phase to a positive transfer of model-based RL agents.

4.3 Atari Games

Finally, to understand how the performance of MAPS scales to more complex
scenarios, we evaluate our approach in Atari Games [2]. In this complex scenarios
we both pre-train and fine-tune all agents up to 5M steps.

For this environment we considered general perceptual and dynamical aug-
mentations, which can be employed in any image-based scenario, regardless of
its complexity. Furthermore, due to the intrinsic difficulty of creating semantic
augmentations in complex scenarios, we explore the use of similar tasks in order
to exploit semantic features during the pre-training of MAPS. Therefore, we
created and use a set of general perceptual, dynamical and semantical augmen-
tations for any image based environments that we refer only as MAPS.

We consider two different training scenarios: initially, we select Pepsi Invaders
as the pre-training task and Space Invaders as our downstream task, to evalu-
ate the role of perceptual and dynamical augmentations in the performance of
MAPS, a scenario we denote by Single Task Transfer. Secondly, we select a group
of three similar games (Pepsi Invaders, Galaxian, Pigs in Space) as pre-training
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Baseline (No Transfer)

06 Transfer WM (no objects)
Transfer WM (different objects)
MAPS (P, without semantics)
04 MAPS (P+D+5)

Reptile (P+D+S)

0.2
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0.0 0.5 1.0 15 2.0 25
1e5

Fig. 6. Transfer performance of pretrained agents in MacroGrid to a semantically-
augmented task (T, # Taq). Results averaged over 10 randomly-seeded runs.
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(a) Single Task Transfer (b) Multiple Task Transfer

Fig. 7. Transfer performance of pretrained agents in a Pepsi and b 3 similar task to
Space Invaders. Results averaged over 5 randomly-seeded runs
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Table 1. Comparison of the final score at step 5M in Space Invaders.

Method 5M Avg. Score
DQN [18] 808 + 38
C51 [1] 1035 + 30
Rainbow [12] 1086 + 81
IQN [6] 1602 + 153
DreamerV2 [9] 1141 4+ 295
Single Task Transfer 1393 + 466
Single Task Transfer—MAPS (P+D) 2032 £ 774
Multiple Task Transfer 863 £ 335
Multiple Task Transfer—MAPS (P+D) | 1813 + 576
Single Task Transfer—Reptile (P+D) 1226 4 458
Multiple Task Transfer—Reptile (P+D) | 1719 + 483

tasks, to exploit semantic variability, and transfer the agent to Space Invaders,
a scenario we refer as Multiple Task Transfer. The selected pre-training tasks
share the same grid-like structure of the enemies as the fine-tuning task.

We present our results in Fig. 7. In the Single Task Transfer we verify that
pre-training on the similar Pepsi task yields a positive improvement, while pre-
training jointly on Multiple Task Transfer has a negligible to negative perfor-
mance over training from scratch. Using MAPS brings a significant improve-
ment over the Single Task pre-training, making it the best performing method
for training the Space Invaders tasks with 5M time-steps when compared with
other publicly available results in Table 1. In the Multiple Task Transfer scenario
(Fig. 7), the results show once again that employing MAPS allows for a signifi-
cant positive transfer over the baseline and over the naive pre-training approach.
Is worth mentioning that while both pre-training methods with MAPS have a
high mean, both also have a big variance in the results, as seen in Table 1. This
higher variance in the performance results also seems to be a characteristic of the
DreamerV2 method. Thus, we can ascertain that our methods using MAPS are
better with a 95% CI than DQN [18], C51 [1] and Rainbow [12], while being com-
petitive with IQN [6] and baseline DreamerV2 [9]. On another hand, we can also
conclude that learning using Multiple Task Transfer with MAPS is significantly
better than without.

5 Conclusions

In this work, we investigated the introduction of perceptual, dynamical and
semantic variability during the pre-training of model-based RL agents for an
efficient transfer of the agents to novel tasks. We contributed with MAPS, a
novel pre-training scheme that introduces augmentations over the observations
of the agent to take advantage of such variability. Our results show that MAPS
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improves the fine-tuning efficiency of pre-trained agents to novel downstream
tasks. In future work, we will explore how MAPS can be used to improve transfer
in model-free RL, as well as accessing MAPS in other model-based agents, which
might employ different auxiliary losses like contrastive learning methods.
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